• Title/Summary/Keyword: Hypsizygus

Search Result 34, Processing Time 0.021 seconds

Characterization of Species of Cladobotryum which Cause Cobweb Disease in Edible Mushrooms Grown in Korea

  • Back, Chang-Gi;Lee, Chang-Yun;Seo, Geon-Sik;Jung, Hee-Young
    • Mycobiology
    • /
    • v.40 no.3
    • /
    • pp.189-194
    • /
    • 2012
  • Four Cladobotryum isolates were collected from four different commercially grown mushroom types infected with cobweb disease in Cheongdo-gun and Chilgok-gun of Gyeongbuk Province, Korea in 2010. The isolates were identified as C. mycophilum from Agaricus bisporus and Pleurotus eryngii, C. varium from Flammulina velutipes and Hypsizygus marmoreus. The cultural characteristics of the four isolates were investigated using potato dextrose agar (PDA) media under nine different temperatures ranging from $5{\sim}32^{\circ}C$. Rapid growth of the isolates to colony diameters of 47~82 mm was observed at conditions of $18{\sim}22^{\circ}C$. No growth was observed at $32^{\circ}C$. C. mycophilum produced a yellowish red pigment while C. varium produced a cream colored pigment after cultivation for 25 days on PDA. Phylogenetic analysis of the internal transcribed spacer region and partial 28S rDNA from the four isolates confirmed they were C. mycophilum and C. varium. Cross pathogenicity tests revealed that the two isolates of C. mycophilum were highly pathogenic toward three mushroom types, but not toward H. marmoreus. The two isolates of C. varium were less pathogenic than those of C. mycophilum, but were pathogenic toward all mushroom types evaluated.

Water Extract from Spent Mushroom Substrate of Hericium erinaceus Suppresses Bacterial Wilt Disease of Tomato

  • Kwak, A Min;Min, Kyeong Jin;Lee, Sang Yeop;Kang, Hee Wan
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • Culture filtrates of six different edible mushroom species were screened for antimicrobial activity against tomato wilt bacteria Ralstonia solanacearum B3. Hericium erinaceus, Lentinula edodes (Sanjo 701), Grifola frondosa, and Hypsizygus marmoreus showed antibacterial activity against the bacteria. Water, n-butanol, and ethyl acetate extracts of spent mushroom substrate (SMS) of H. erinaceus exhibited high antibacterial activity against different phytopathogenic bacteria: Pectobacterium carotovorum subsp. carotovorum, Agrobacterium tumefaciens, R. solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, X. axonopodis pv. vesicatoria, X. axonopodis pv. citiri, and X. axonopodis pv. glycine. Quantitative real-time PCR revealed that water extracts of SMS (WESMS) of H. erinaceus induced expressions of plant defense genes encoding ${\beta}$-1,3-glucanase (GluA) and pathogenesis-related protein-1a (PR-1a), associated with systemic acquired resistance. Furthermore, WESMS also suppressed tomato wilt disease caused by R. solanacearum by 85% in seedlings and promoted growth (height, leaf number, and fresh weight of the root and shoot) of tomato plants. These findings suggest the WESMS of H. erinaceus has the potential to suppress bacterial wilt disease of tomato through multiple effects including antibacterial activity, plant growth promotion, and defense gene induction.

Extraction and Application of Bulk Enzymes and Antimicrobial Substance from Spent Mushroom Substrates

  • Lim, Seon-Hwa;Kwak, A Min;Min, Kyong-Jin;Kim, Sang Su;Kang, Hee Wan
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.19-19
    • /
    • 2014
  • Pleurotus ostreatus, P. eryngii, and Flammulina velutipes are major edible mushrooms that account for over 89% of total mushroom production in Korea. Recently, Agrocybe cylindracea, Hypsizygus marmoreus, and Hericium erinaceu are increasingly being cultivated in mushroom farms. In Korea, the production of edible mushrooms was estimated to be 614,224 ton in 2013. Generally, about 5 kg of mushroom substrate is needed to produce 1 kg of mushroom, and consequently about 25 million tons of spent mushroom substrate (SMS) is produced each year in Korea. Because this massive amount of SMC is unsuitable for reuse in mushroom production, it is either used as garden fertilizer or deposited in landfills, which pollutes the environment. It is reasonably assumed that SMS includes different secondary metabolites and extracellular enzymes produced from mycelia on substrate. Three major groups of enzymes such as cellulases, xylanases, and lignin degrading enzymes are involved in breaking down mushroom substrates. Cellulase and xylanase have been used as the industrial enzymes involving the saccharification of biomass to produce biofuel. In addition, lignin degrading enzymes such as laccases have been used to decolorize the industrial synthetic dyes and remove environmental pollutions such as phenolic compounds. Basidiomycetes produce a large number of biologically active compounds that show antibacterial, antifungal, antiviral, cytotoxic or hallucinogenic activities. However, most previous researches have focused on therapeutics and less on the control of plant diseases. SMS can be considered as an easily available source of active compounds to protect plants from fungal and bacterial infections, helping alleviate the waste disposal problem in the mushroom industry and creating an environmentally friendly method to reduce plant pathogens. We describe extraction of lignocellulytic enzymes and antimicrobial substance from SMSs of different edible mushrooms and their potential applications.

  • PDF

Comparative Analysis of the Nutritional and Bioactive Components of White and Brown Button Mushrooms (백색양송이와 갈색양송이의 영양성분 및 생리활성 성분 비교 분석)

  • Oh, Youn-Lee;Kim, Minseek;Jang, Kab-Yeul;Oh, Min Ji;Im, Ji-Hoon;Lee, Jong-Won
    • Journal of Mushroom
    • /
    • v.20 no.3
    • /
    • pp.119-126
    • /
    • 2022
  • As the importance of public health increases with the spread of infectious diseases, functionality has become a factor affecting consumers' purchase of mushrooms. Therefore, the bioactive components of button mushrooms (Agaricus bisporus), which are generally known to promote button mushroom consumption, were analyzed. White and brown button mushrooms were compared and white beech mushroom (Hypsizygus marmoreus) were used as a control. White button mushrooms had higher sugar and inorganic potassium concentrations than brown button mushrooms, whereas sodium, magnesium, and vitamin C concentrations were not significantly different between the different button mushrooms. Moreover, there was approximately twice as much ergosterol in white button mushrooms than brown button mushrooms. Brown button mushrooms had higher concentrations of 𝛽-glucan and oxalic acid than white button mushrooms, but there was no significant difference in total organic acid content between the two mushroom types. High concentrations of the essential amino acids, ergothioneine, isoleucine, and leucine and the non-essential amino acids, glycine and alanine, were observed. Concentrations of the vitamin B group and total polyphenols were also high.