• 제목/요약/키워드: Hypoxic pulmonary vasoconstriction

검색결과 7건 처리시간 0.02초

Disappearance of Hypoxic Pulmonary Vasoconstriction and $O_2$-Sensitive Nonselective Cationic Current in Arterial Myocytes of Rats Under Ambient Hypoxia

  • Yoo, Hae Young;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권5호
    • /
    • pp.463-468
    • /
    • 2013
  • Acute hypoxia induces contraction of pulmonary artery (PA) to protect ventilation/perfusion mismatch in lungs. As for the cellular mechanism of hypoxic pulmonary vasoconstriction (HPV), hypoxic inhibition of voltage-gated $K^+$ channel (Kv) in PA smooth muscle cell (PASMC) has been suggested. In addition, our recent study showed that thromboxane $A_2$ ($TXA_2$) and hypoxia-activated nonselective cation channel ($I_{NSC}$) is also essential for HPV. However, it is not well understood whether HPV is maintained in the animals exposed to ambient hypoxia for two days (2d-H). Specifically, the associated electrophysiological changes in PASMCs have not been studied. Here we investigate the effects of 2d-H on HPV in isolated ventilated/perfused lungs (V/P lungs) from rats. HPV was almost abolished without structural remodeling of PA in 2d-H rats, and the lost HPV was not recovered by Kv inhibitor, 4-aminopyridine. Patch clamp study showed that the hypoxic inhibition of Kv current in PASMC was similar between 2d-H and control. In contrast, hypoxia and $TXA_2$-activated $I_{NSC}$ was not observed in PASMCs of 2d-H. From above results, it is suggested that the decreased $I_{NSC}$ might be the primary functional cause of HPV disappearance in the relatively early period (2 d) of hypoxia.

Requirement of Pretone by Thromboxane $A_2$ for Hypoxic Pulmonary Vasoconstriction in Precision-cut Lung Slices of Rat

  • Park, Su-Jung;Yoo, Hae-Young;Kim, Hye-Jin;Kim, Jin-Kyoung;Zhang, Yin-Hua;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권1호
    • /
    • pp.59-64
    • /
    • 2012
  • Hypoxic pulmonary vasoconstriction (HPV) is physiologically important response for preventing mismatching between ventilation and perfusion in lungs. The HPV of isolated pulmonary arteries (HPV-PA) usually require a partial pretone by thromboxane agonist (U46619). Because the HPV of ventilated/perfused lungs (HPV-lung) can be triggered without pretone conditioning, we suspected that a putative tissue factor might be responsible for the pretone of HPV. Here we investigated whether HPV can be also observed in precision-cut lung slices (PCLS) from rats. The HPV in PCLS also required partial contraction by U46619. In addition, $K^+$ channel blockers (4AP and TEA) required U46619-pretone to induce significant contraction of PA in PCLS. In contrast, the airways in PCLS showed reversible contraction in response to the $K^+$ channel blockers without pretone conditioning. Also, the airways showed no hypoxic constriction but a relaxation under the partial pretone by U46619. The airways in PCLS showed reliable, concentration-dependent contraction by metacholine ($EC_{50}$, ~210 nM). In summary, the HPV in PCLS is more similar to isolated PA than V/P lungs. The metacholineinduced constriction of bronchioles suggested that the PLCS might be also useful for studying airway physiology in situ.

Characteristics of Hypoxic Pulmonary Vasoconstriction of the Rat: Study by the Vessel Size and Location in the Lung

  • Lee, Sang-Jin;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권3호
    • /
    • pp.321-328
    • /
    • 1999
  • Pulmonary blood vessels with diameters of $200{\sim}400\;{\mu}m$ produce considerably more force in response to vasoconstrictor drugs than those which are either smaller or larger. We have therefore investigated whether or not hypoxic pulmonary vasoconstriction (HPV) is more powerful in vessels of these diameters. We have also looked at the possibility that vessels from different regions of the lung respond differently. To do this we have grouped vessels according to their location within the lung as well as by size. We used a small vessel myograph (Cambustion AM10, Cambridge, UK) to study 208 preconstricted $(1\;{\mu}M\;PGF_{2{\alpha}})$ small pulmonary arteries $(300{\sim}800\;{\mu}m$ diameter when stretched to a tension equivalent to 25 mmHg transmural pressure) from 39 rats anaesthetized with 2% inspired halothane. A biphasic contraction was observed in response to hypoxia (ca. 25 mmHg $Po_2).$ The magnitudes of both the first, transient, phase (PT, peak tension) and of the second, sustained, phase (SST, steady state tension) were measured. The latter was measured 40 min after the start of hypoxia. The first phase was most pronounced in vessels with an average diameter of 423 ${\mu}m$ while the second phase was most pronounced in larger vessels (mean diameter 505 ${\mu}m).$ These maximal responses were all seen in vessels somewhat larger than reported by others. The responses of smaller vessels $(400{\sim}500\;{\mu}m)$ did not depend upon their location within the lung, but those of larger vessels $(600{\sim}700\;{\mu}m)$ showed regional differences. Those from the right lobe and those from the base of the lung gave the largest responses. It was especially noticeable that large vessels (631 ${\mu}m$ diameter) from the base of the right lung gave the biggest responses. Thus HPV seems to occur not in a uniform manner, dependent solely to the size of vessels, but it also depends to some degree on the region of the lung from which vessels have been taken. Furthermore, our results suggest that larger vessels, as well as smaller ones, may contribute significantly to HPV.

  • PDF

Hypoxic pulmonary vasoconstriction and vascular contractility in monocrotaline-induced pulmonary arterial hypertensive rats

  • Kim, Hae Jin;Yoo, Hae Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권6호
    • /
    • pp.641-647
    • /
    • 2016
  • Pulmonary arterial hypertension (PAH) is a progressive disease characterized by vascular remodeling of pulmonary arteries (PAs) and increased vascular resistance in the lung. Monocrotaline (MCT), a toxic alkaloid, is widely used for developing rat models of PAH caused by injury to pulmonary endothelial cells; however, characteristics of vascular functions in MCT-induced PAH vary and are not fully understood. Here, we investigated hypoxic pulmonary vasoconstriction (HPV) responses and effects of various vasoconstrictors with isolated/perfused lungs of MCT-induced PAH (PAH-MCT) rats. Using hematoxylin and eosin staining, we confirmed vascular remodeling (i.e., medial thickening of PA) and right ventricle hypertrophy in PAH-MCT rats. The basal pulmonary arterial pressure (PAP) and PAP increase by a raised flow rate (40 mL/min) were higher in the PAH-MCT than in the control rats. In addition, both high $K^+$ (40 mM KCl)- and angiotensin II-induced PAP increases were higher in the PAH-MCT than in the control rats. Surprisingly, application of a nitric oxide synthase inhibitor, L-$N^G$-Nitroarginine methyl ester (L-NAME), induced a marked PAP increase in the PAH-MCT rats, suggesting that endothelial functions were recovered in the three-week PAH-MCT rats. In addition, the medial thickening of the PA was similar to that in chronic hypoxia-induced PAH (PAH-CH) rats. However, the HPV response (i.e., PAP increased by acute hypoxia) was not affected in the MCT rats, whereas HPV disappeared in the PAH-CH rats. These results showed that vascular contractility and HPV remain robust in the MCT-induced PAH rat model with vascular remodeling.

Tc-99m 거대응집알부민을 이용한 폐관류 스캔에서 관찰되는 다발성 열소 (Hot Spots on Tc-99m MAA Perfusion Lung Scan)

  • 임석태;손명희
    • 대한핵의학회지
    • /
    • 제35권4호
    • /
    • pp.288-290
    • /
    • 2001
  • A 61 year-old woman underwent perfusion and inhalation lung scan for the evaluation of pulmonary thromboembolism. Tc-99m MAA perfusion lung scan showed multiple round hot spots in both lung fields. Tc-99m DTPA aerosol inhalation lung scan and chest radiography taken at the same time showed normal findings (Fig. 1, 2). A repeated perfusion lung scan taken 24 hours later demonstrated no abnormalities (Fig. 3). Hot spots on perfusion lung scan can be caused by microsphere clumping due to faulty injection technique or by radioactive embolization from upper extremity thrombophlebitis after injection. Focal hot spots can signify zones of atelectasis, where the hot spots probably represent a failure of hypoxic vasoconstriction. Artifactual hot spots due to microsphere clumping usually appear to be round and in peripheral location, and the lesions due to a loss of hypoxic vasoconstriction usually appear to be hot uptakes having linear $borders^{1-3)}$. Although these artifactual hot spots have been well-known, we rarely encounter them. This report presents a case with artifactual hot spots due to microsphere clumping on Tc-99m MAA perfusion lung scan.

  • PDF

흰쥐 폐동맥의 내피세포의존성 혈관이완과 급성 저산소성 폐동맥수축에서 산화질소의 역할 (A Study of Endothelium-dependent Pulmonary Arterial Relaxation and the Role of Nitric oxide on Acute Hypoxic Pulmonary Vasoconstriction in Rats)

  • 인광호;이진구;조재연;심재정;강경호;유세화
    • Tuberculosis and Respiratory Diseases
    • /
    • 제41권3호
    • /
    • pp.231-238
    • /
    • 1994
  • 연구배경: 저산소증에 의한 폐동맥수축의 기전은 저산소증 자체가 폐혈관 평활근에 직접 작용하여 수축을 유발한다는 것과, 저산소증에 의해 조직으로 부터 여러 매개물질이 유리되어 혈관평활근을 수축시킨다는 설이 제시되고 있지만 정확히 밝혀져있지 않다. 최근에는 저산소증이 EDRF의 생성을 억제하여 혈관수축을 유발시킨다고하여 관심이 되고 있다. 본 연구에서는 흰쥐 폐동맥에서 내피세포 의존형 혈관이완을 조사하고, 저산소증에 의한 폐동맥수축에 EDRF의 작용을 조사하였다. 방법 : 300~350g의 수컷 흰쥐(Sprague Dawley)의 폐동맥을 박리하여 길이가 2mm되는 폐동맥고리를 Krebs용액으로 채워져 있으며, 95% $O_2$/5% $CO_2$(산소상태)와 95% $N_2$/5% $CO_2$(저산소상태)가 각각 공급되는 magnus관에서 가는 stainless 갈고리로 고정한 다음 Gilson사의 polygraph에 부착된 isometric transducer(FT.03 Grass, Quincy, USA)에 의해 등장성 수축곡선을 그리도록 장치하였다. 결과: 1) 내피세포가 있는 폐동맥에서 PE($10^{-6}M$)에 의한 혈관수축은 Ach($10^{-9}-10^{-5}M$) 및 SN($10^{-9}-10^{-5}M$)의 농도에 비례해서 이완되어 거의 기초장력까지 이완되었으나, 내피세포를 제거한 폐동맥에서는 Ach($10^{-9}-10^{-5}M$)에 의한 혈관이완은 거의 상실되었다. 2) L-NMMA($10^{-4}M$)으로 전처치한 경우 Ach($10^{-9}-10^{-5}M$)에 의한 혈관이완은 전처치하지 않은 경우보다 의미있게 감소하였다. 3) L-arginine($10^{-4}M$)과 L-NMMA($10^{-4}M$)을 전처치 하였을 경우 Ach($10^{-9}-10^{-5}M$)에 의한 혈관이완은 L-NMMA에 의해 거의 영향을 받지 않았다. 4) PE($10^{-6}M$)에 의한 폐동맥 수축은 산소상태보다 저산소 상태에서 훨씬 강했으며, Ach($10^{-9}-10^{-5}M$)에 의한 혈관이완은 산소상태보다 저산소상태에서 의미있게 감소하였다. 5) L-arginine($10^{-4}M$)을 전처치 하였을 경우 저산소상태에서의 Ach($10^{-9}-10^{-5}M$)에 의한 혈관이완은 산소상태에서의 Ach 에 의한 혈관이완 정도로 회복되었다. 결론: 흰쥐 폐동맥에서 내피세포의존성 혈관이완은 NO가 관여하며, 저산소증에 의한 폐동맥 수축은 내피세포내의 EDRF 생성의 저하와 관련이 있을 것으로 사료된다.

  • PDF