• Title/Summary/Keyword: Hypothalamic Hormone

Search Result 79, Processing Time 0.024 seconds

Growth Hormone Therapy in Adults with Prader-Willi Syndrome

  • Cho, Sung Yoon
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.1 no.2
    • /
    • pp.49-53
    • /
    • 2015
  • Prader-Willi syndrome (PWS) is a complex multisystem genetic disorder characterized by hypothalamic-pituitary dysfunction. Many features of PWS indicate a deficiency in growth hormone (GH) production, and these findings provide a rationale for GH therapy in PWS. It is possible that rhGH therapy could have beneficial effects in adults with PWS, similar to those in adults with GH deficiency (GHD) of non-syndromic cause. However, there is a paucity of data on the use of GH in adults with PWS. Here, the previous studies about efficacy and safety of rhGH therapy in PWS adults are summarized. Briefly, rhGH therapy in PWS adults may improve body composition, leading to increased lean body mass and decreased fat mass, as well as decreased subcutaneous and visceral adiposity without overall changes in body mass index. There may be at least transient deterioration in glucose homoeostasis in some PWS patients on rhGH therapy, which requires further study. In addition, clinical care guidelines for rhGH therapy in adults with PWS were suggested.

Evaluation of Newly Developed Chemical Castration Method: Changes in Hormone Gene Expression of Hypothalamic-Pituitary Axis

  • Kwak, Byung Kuk;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.21 no.3
    • /
    • pp.307-315
    • /
    • 2017
  • Surgical castration (also known as orchidectomy, ORX) has been frequently performed to avoid uncontrolled breeding. However, it has some serious disadvantages. Several laboratories have developed chemical castration methods, using bilateral intratesticular injection (BITI) of simple chemical solutions. The present study was undertaken to compare the effects of ORX and of hypertonic saline BITI on the androgen-sensitive tissues such as pituitary and hypothalamus. Serum testosterone (T) levels of ORX animals and hypertonic saline BITI animals (SAL) after 4 weeks of the manipulations exhibited significantly drops as compared with the levels of intact animals ( $Intact:ORX:SAL=7.74{\pm}1.31:1.34{\pm}0.19:1.28{\pm}0.18ng/ml$, p<0.001). Both ORX and BITI method induced similar stimulatory effects on the pituitary gonadotropin subunits and hypothalamic KiSS-1 gene expressions. In contrast, the effects of ORX and hypertonic saline BITI on hypothalamic GnRH gene expression were different from these gene expressions, shown an inverse relationship between the two groups ($Intact:ORX:SAL=1:0.45{\pm}0.06:1:2.07{\pm}0.41:1.51{\pm}0.37AU$; ORX, p<0.001; SAL, p<0.05). In conclusion, we provided evidence that hypertonic saline BITI method has equivalent efficacy of T depletion to surgical castration in rats. The present study suggests the hypertonic saline BITI could be a promising substitute to conventional surgical castration.

Differential Growth of the Reproductive Organs during the Peripubertal Period in Male Rats

  • Han, Seung Hee;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.469-475
    • /
    • 2013
  • In mammals, puberty is a process of acquiring reproductive competence, triggering by activation of hypothalamic kisspeptin (KiSS)-gonadotropin releasing hormone (GnRH) neuronal circuit. During peripubertal period, not only the external genitalia but the internal reproductive organs have to be matured in response to the hormonal signals from hypothalamic-pituitary-gonadal (H-P-G) axis. In the present study, we evaluated the maturation of male rat accessory sex organs during the peripubertal period using tissue weight measurement, histological analysis and RT-PCR assay. Male rats were sacrificed at 25, 30, 35, 40, 45, 50, and 70 postnatal days (PND). The rat accessory sex organs exhibited differential growth patterns compared to those of non-reproductive organs. The growth rate of the accessory sex organs were much higher than the those of non-reproductive organs. Also, the growth spurts occurred differentially even among the accessory sex organs; the order of prepubertal organ growth spurts is testis = epididymis > seminal vesicle = prostate. Histological study revealed that the presence of sperms in seminiferous tubules and epididymal ducts at day 50, indicating the puberty onset. The number of duct and the volume of duct in epididymis and prostate were inversely correlated during the experimental period. Our RT-PCR revealed that the levels of hypothalamic GnRH transcript were increased significantly on PND 40, suggesting the activation of hypothalamic GnRH pulse-generator before puberty onset. Studies on the peripubertal male accessory sex organs will provide useful references on the growth regulation mechanism which is differentially regulated during the period in androgen-sensitive organs. The detailed references will render easier development of endocrine disruption assay.

Endocrine problems in children with Prader-Willi syndrome: special review on associated genetic aspects and early growth hormone treatment

  • Jin, Dong-Kyu
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.7
    • /
    • pp.224-231
    • /
    • 2012
  • Prader-Willi syndrome (PWS) is a complex multisystem genetic disorder characterized by hypothalamic-pituitary dysfunction. The main clinical features include neonatal hypotonia, distinctive facial features, overall developmental delay, and poor growth in infancy, followed by overeating with severe obesity, short stature, and hypogonadism later in development. This paper reviews recent updates regarding the genetic aspects of this disorder. Three mechanisms (paternal deletion, maternal disomy, and deficient imprinting) are recognized. Maternal disomy can arise because of 4 possible mechanisms: trisomy rescue (TR), gamete complementation (GC), monosomy rescue (MR), and postfertilization mitotic nondisjunction (Mit). Recently, TR/GC caused by nondisjunction at maternal meiosis 1 has been identified increasingly, as a result of advanced maternal childbearing age in Korea. We verified that the d3 allele increases the responsiveness of the growth hormone (GH) receptor to endogenous GH. This paper also provides an overview of endocrine dysfunctions in children with PWS, including GH deficiency, obesity, sexual development, hypothyroidism, and adrenal insufficiency, as well as the effects of GH treatment. GH treatment coupled with a strictly controlled diet during early childhood may help to reduce obesity, improve neurodevelopment, and increase muscle mass. A more active approach to correct these hormone deficiencies would benefit patients with PWS.

Novel anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase

  • Lee, Ki-Up
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.3-4
    • /
    • 2003
  • Body weight is maintained at a relatively constant level over days and months despite variability in food intake and physical activity. To achieve energy homeostasis, the hypothalamus receives information related to energy surplus or shortage from the periphery and controls food intake and energy expenditure. Leptin, an adipocyte derived hormone, is a principal mediator that signals the brain about the stored energy status. Increased leptin signaling in the brain prevents excess energy stores by suppressing food intake and increasing energy expenditure. In addition, insulin and nutrients themselves, such as glucose and free fatty acids, also regulate food intake.

  • PDF

Dual Effects of Norepinephrine on $GABA_A$-Mediated Spontaneous Postsynaptic Currents in the Rat Hypothalamic Paraventricular Neurons.

  • Han, Seong-Kyu;Ryu, Pan-Dong
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.58-58
    • /
    • 1999
  • The paraventricular nucleus (PVN) is a complex structure comprised of several different populations of cells divided into two main groups, the magnocellular (type I) neurons which secrete vasopressin and oxytocin and the parvocellular (type II) neurons which regulate hormone secretion from the anterior pituitary.(omitted)

  • PDF

Characterization of Melanin-concentrating Hormone from Olive Flounder (Paralichthys olivaceus) (양식넙치 멜라닌 농축 호르몬의 특성)

  • Chung, In Young;Jeon, Jeong Min;Song, Young Hwan
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.284-292
    • /
    • 2018
  • The melanin-concentrating hormone (MCH), a cyclic hypothalamic peptide composed of 17 amino acids, was initially identified in chum salmon (Oncorhynchus keta) as a regulator of pigmentation. Mammalian MCHs are cyclic hypothalamic peptides composed of 19 amino acids that regulate food intake and energy homeostasis. The present study examined not only MCH expression of different tissues but also the melanohore aggregation and intracellular $Ca^{2+}$ influx of fMCH and the other MCH. Real-time qPCR showed that MCH expressed specially in the brain, gonad, and ovary, and expression of MCH was observed during the developmental stages. In the application of synthetic fMCH and both types of synthetic fMCH, dN-fMCH and dC-fMCH, scale melanophore induced significant changes in aggregation activity with various concentrations of MCH. Also, compared to hMCH and sMCH, fMCH exhibited a 36~99.85% increase in relative potency (%), whereas aggregation of dN-fMCH and dC-fMCH remained in a high concentration. However, dispersion was induced rapidly according to be low concentration of dN-fMCH and dC-fMCH. We show that fMCH and its derivates were bound human MCHR1 and rat MCHR expressed in HEK293T cells with nano-molar affinity and are likely to be ligand-induced to mobilize intracellular $Ca^{2+}$. These results may provide new ligands for binding assay with MCHew ligands, as a structure similar to the mammalian MCH structure was discovered in fish. Once the fMCH receptor system is in place, it can be compared to the MCH system of mammals in terms of MCH function.

Anew formula CPC22 regulates bone loss, hot flashes, and dysregulated lipid metabolism in ovariectomized postmenopausal mice

  • Hee-Yun Kim;Hyunwoo Jee;Hosong Cho;Dongjun Park;Hyun-Ja Jeong
    • CELLMED
    • /
    • v.13 no.14
    • /
    • pp.15.1-15.15
    • /
    • 2023
  • Background and objective: A new formular CPC22 consists of Cynanchum wilfordii root, Pueraria thomsonii flower, and Citrus unshiu peel and has been developed to improve the postmenopausal symptoms. The research intended to evaluate whether CPC22 would regulate bone loss, hot flashes, and dysregulated lipid metabolism in ovariectomized (OVX) postmenopausal mice. Method: The OVX mice were orally administered with CPC22 daily for 7 weeks. Results: CPC22 regulated OVX-induced bon loss by enhancing serum osteoprotegerin, alkaline phosphatase, and osteocalcin levels and diminishing serum receptor-activator of the NF-κB ligand (RANKL), collagen type 1 cross-linked N-telopeptide, and tartrate-resistant acid phosphatase levels. As a result of CPC22 treatment, notable decreases in tail skin temperature and rectal temperature were observed, along with diminishment in hypothalamic RANKL and monoamine oxidase A levels and enhancement in hypothalamic serotonin (5-HT), norepinephrine, dopamine, 5-HT2A, and estrogen receptor-β levels. CPC22 enhanced levels of serum estrogen and diminished levels of serum follicle-stimulating hormone and luteinizing hormone. CPC22 regulated levels of serum lipid metabolites, including total cholesterol, triglycerides, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Furthermore, CPC22 diminished levels of serum blood urea nitrogen, creatine kinase, alanine transaminase, aspartate aminotransferase, and lactate dehydrogenase and restored vaginal dryness without affecting uterus atrophy index and vagina weights. Conclusion: Therefore, these results indicated that CPC22 improves OVX-induced bone loss, hot flashes, and dysregulated lipid metabolism by compensating for estrogen deficiency without side effects, suggesting that CPC22 may be used for the prevention and treatment of post menopause.

The Cellular Localization of GnRH and LHR in Aged Female Mice

  • Kim, Young-Jong;Park, Byung-Joon;Lee, Won-Jae;Kim, Seung-Joon
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.305-311
    • /
    • 2018
  • Gonadotropin releasing hormone (GnRH) centrally plays a role in control of the hypothalamic-pituitary-gonadal axis-related hormone secretions in the reproductive neuroendocrine system. In addition, hormone receptors like luteinizing hormone receptor (LHR) are important element for hormones to take effect in target organ. However, ageing-dependent changes in terms of the distribution of GnRH neurons in the brain and LHR expression in the acyclic ovary have not been fully understood yet. Therefore, we comparatively investigated those ageing-dependent changes using young (1-5 months), middle (11-14 months) and old (21-27 months) aged female mice. Whereas a number of GnRH positive fibers and neurons with monopolar or bipolar morphology were abundantly observed in the brain of the young and middle aged mice, a few GnRH positive neurons with multiple dendrites were observed in the old aged mice. In addition, acyclic ovary without repeated development and degeneration of the follicles was shown in the old aged mice than others. LHR expression was localized in theca cells, granulosa cell, corpora lutea and atretic follicle in the ovaries from young and middle aged mice, in contrast, old aged mice had few positive LHR expression on the follicles due to acyclic ovary. However, the whole protein level of LHR was higher in the ovary of old aged mice than others. These results are expected to be used as an important basis on the relationship between GnRH and LHR in old aged animals as well as in further research for reproduction failure.