• Title/Summary/Keyword: Hypocycloid Crack

Search Result 2, Processing Time 0.014 seconds

Thermal Stress Intensity Factors for Traction Free Cusp Cracks (트랙션이 없는 커스프 균열의 열응력세기계수에 관한 연구)

  • 이강용;최흥섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.286-294
    • /
    • 1988
  • The thermal stress intensity factors (TSIF's) for the cusp cracks such as hypocycloid crack, symmetric airfoil crack and symmetric lip crack are determined by using Bogdanoff's complex variable approaches in plane thermoplasticity. The results are expressed in terms of the periodic functions of the direction of uniform heat flow. The TSIF's are shown to be sensitive to both the direction of uniform heat flow and be thermal boundary conditions. It is also shown that Fourence's solutions for an insulated circular hole and Sih's solutions for an insulated Griffith crack are derived from the results of the stress and displacement fields for the hypocycloid crack and the TSIF's for the various cusp cracks, respectively.

Thermal Stress Intensity Factors for Rigid Inclusions of Cusp Crack Shape (커스프균열형 강체함유물의 열응력 세기계수에 관한 연구)

  • 이강용;최흥섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.497-504
    • /
    • 1988
  • The steady state thermal stress intensity factors (TSIF's) are analyzed for hypocycloid, symmetric airfoil and symmetric lip type rigid inclusions embedded in infinite elastic solids, using Boganoff's complex variable approach in plane thermoplasticity. Two thermal conditions are considered, one with an uniform heat flow disturbed by an insulated rigid inclusion of cusp crack shape and the other with an uniform heat flow disturbed by a rigid inclusion of cusp crack shape with fixed boundary temperature. The tendencies of TSIF's for rigid inclusions of cusp crack shape are somewhat different from those of traction free cusp cracks. However, if k=-1, the non-dimensionalized TSIF's for rigid inclusions of cusp crack shape become those of traction free cusp cracks like the tendencies of the SIF's under mechanical loading conditions. The thermal stress and displacement components for a rigid circular inclusion of radius Ro are drived from the results of a hypocycloid crack type rigid inclusion.