• Title/Summary/Keyword: Hypo-elastic

Search Result 3, Processing Time 0.019 seconds

A Characteristics of Crack Behavior on Graphite (그라파이트 재료의 고온 크랙특성 평가)

  • Koo, Song-Hoe;Lee, Young-Shin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.417-420
    • /
    • 2009
  • The purpose of the present study is to evaluate high temperature fracture toughness through the experimental and analytical method. The analysis method is proposed to simulate the fracture toughness of high temperatures. Load-COD curves of compact test specimen acquired by finite element method analysis using hypo elastic model are simulated to determine the crack initiation load on high temperatures. The results of experimental work are in accord with analysis in thermal shock test.

  • PDF

A reinforced concrete frame element with shear effect

  • Valipour, Hamid R.;Foster, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.57-78
    • /
    • 2010
  • A novel flexibility-based 1D element that captures the material nonlinearity and second order P-$\Delta$ effects within a reinforced concrete frame member is developed. The formulation is developed for 2D planar frames in the modified fiber element framework but can readily be extended to 3D cases. The nonlinear behavior of concrete including cracking and crushing is taken into account through a modified hypo-elastic model. A parabolic and a constant shear stress distribution are used at section level to couple the normal and tangential tractions at material level. The lack of objectivity due to softening of concrete is addressed and objectivity of the response at the material level is attained by using a technique derived from the crack band approach. Finally the efficiency and accuracy of the formulation is compared with experimental results and is demonstrated by some numerical examples.

Nonlinear analysis on concrete-filled rectangular tubular composite columns

  • Lu, Xilin;Yu, Yong;Kiyoshi, Tanaka;Satoshi, Sasaki
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.577-587
    • /
    • 2000
  • A 3D nonlinear finite element computation model is presented in order to analyze the concrete filled rectangular tubular (CFRT) composite structures. The concrete material model is based on a hypo-elastic orthotropic approach while the elasto-plastic hardening model is employed for steel element. The comparisons between experimental and analytical results show that the proposed model is a relatively simple and effective one. The analytical results show that the capacity of inner concrete of CFRT column mainly depends on the two diagonal zones, and the confining effect of CFRT section is mainly concentrated on the corner zones. At the ultimate state, the side concrete along the section cracks seriously, and the corner concrete softens with the increase of compressive strains until failure.