초분광영상을 이용한 변화탐지 기법으로는 Chronochrome(CC), Principal Component Analysis(PCA), 분광혼합분석(spectral unmixing) 등이 있다. 특히, 분광혼합분석을 이용한 변화탐지는 변화객체의 위치 정보뿐만 아니라 변화의 속성까지 분석할 수 있다는 점에서 매우 효과적이나, 분광혼합분석을 활용한 초분광영상의 변화탐지 연구는 여전히 초기단계에 머물러 있다. 본 연구에서는 분광혼합분석을 이용한 효과적인 변화탐지를 위하여 Iterative Error Analysis(IEA)와 Spectral Angle Mapper(SAM) 등을 활용하여 두 영상에서 변화지역을 설명할 수 있는 동일한 endmember를 결정하였으며, 점유비율의 차영상을 통하여 변화지역을 추출하였다. 제안기법의 적용성을 평가하기 위하여 임의의 변화지역을 포함한 Compact Airborne Spectrographic Imager(CASI) 및 Hyperion 모의영상에 대한 변화탐지를 수행하였다. 실험결과, 제안기법이 기존의 CC, PCA, N-FINDR를 이용한 분광혼합분석보다 효과적으로 변화지역을 추출할 수 있는 것으로 나타났다. 본 연구의 제안기법은 사전정보 없이 자동으로 동일한 endmember를 추출할 수 있는 장점을 갖기 때문에 다양한 피복물질로 구성된 영상의 변화탐지에 효과적으로 활용될 것이다.
분광 영상의 효과적인 테스트베드 구축은 초분광 영상의 다양한 활용을 위하여 선행되어야한다. 본 연구에서는 다양한 연구 분야에 적용할 수 있는 테스트베드의 구축 방법 및 효용성에 대한 기초 연구를 수행하였다. 이를 위하여, 기존의 국내 외 테스트베드 생성 방법을 분석하고, 이를 바탕으로 하여 항공기 기반 초분광 센서의 촬영을 위한 테스트베드를 설계하였다. 구축된 테스트베드를 촬영한 영상에서 기준자료를 생성시키기 위하여, 본 연구에서는 대리보정에 의한 전처리 기법을 적용하고, 이에 대한 효용성을 분석하였다. 실험결과, 대리보정은 타프를 이용하는 것이 가장 이상적이지만, 상황에 따라서 분광반사율이 일정하거나, 변화폭이 상대적으로 적은 물질을 이용하는 것이 가능하다는 것을 확인하였다. 본 연구에서 촬영한 테스트베드 자료는 국내 외의 초분광 영상 처리 연구에 참조자료로 사용될 수 있을 것으로 사료된다.
위성 영상 자료에 대한 품질의 향상과 안정화는 다양한 목적을 가진 사용자들을 만족시킬 수 있다. 특히 절대 방사 검/보정은 영상의 광항적 품질을 유지하기 위한 척도가 된다. 본 연구에서는 초분광 영상 밴드 접합 기법과 분광 반응도를 이용하여 다중 분광 센서의 가상화를 통해 절대 방사 보정 계수의 적합성을 판단하였다. 적합성 분석을 위해 약 30분 차이로 촬영된 EO-1 Hyperion과 Landsat-8 OLI 센서의 영상을 이용하였고, 서로 다른 특성을 지닌 토지 피복으로 구성된 3개 지역을 선정하여 복사 에너지 값을 비교 하였다. 그 결과, 시공간에 따른 차이, 센서 수준의 차이를 제외하고 모든 밴드에서 0.99 이상의 적합성을 보여 주었다.
Purpose: Nondestructive evaluation of seed viability is a highly demanded technique in the seed industry. In this study, hyperspectral imaging system was used for discrimination of viable and non-viable radish seeds. Method: The spectral data with the range from 400 to 1000 nm measured by hyperspectral reflectance imaging system were used. A calibration and a test models were developed by partial least square discrimination analysis (PLS-DA) for classification of viable and non-viable radish seeds. Either each data set of visible (400~750 nm) and NIR (750~1000 nm) spectra and the spectra of the combined spectral ranges were used for developing models. Results: The discrimination accuracy of calibration was 84% for visible range and 76.3% for NIR range. The discrimination accuracy of test was 84.2% for visible range and 75.8% for NIR range. The discrimination accuracies of calibration and test with full range were 92.2% and 92.5%, respectively. The resultant images based on the optimal PLS-DA model showed high performance for the discrimination of the nonviable seeds from the viable seeds with the accuracy of 95%. Conclusions: The results showed that hyperspectral reflectance imaging has good potential for discriminating nonviable radish seeds from massive amounts of viable seeds.
Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
농업과학연구
/
제47권3호
/
pp.633-644
/
2020
Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.
When and Where, What kind of agricultural products will be produced and provided for the market? It is a commercial requirement, and also an academic questions to remote sensing technology. Crop physiology analysis and growth monitoring are important elements for precision agriculture management. Remote sensing technology supplies us more selections and available spaces in this dynamic change study by producing images of different spatial, spectral and temporal resolutions. Especially, the hyperspectral remote sensing should do play a key role in crop growth investigation at national, regional and global scales. In the past five years, Chinese academy of sciences and Japan NTT-DATA have made great efforts to establish a prototype information service system to dynamically survey the vegetable planting situation in Nagano area of Japan mainly based on remote sensing data. For such concern, a flexible and light-duty flight system and some practical data processing system and some necessary background information should be rationally made together. In addition, some studies are also important, such as quick pre-processing for hyperspectral data, Multi-temporal vegetation index analysis, hyperspectral image classification in support of GIS data, etc. In this paper, several spectral data analysis models and a designed airborne platform are provided and discussed here.
Juntae Kim;Hary Kurniawan;Mohammad Akbar Faqeerzada;Geonwoo Kim;Hoonsoo Lee;Moon Sung Kim;Insuck Baek;Byoung-Kwan Cho
한국축산식품학회지
/
제43권6호
/
pp.1150-1169
/
2023
Edible insects are gaining popularity as a potential future food source because of their high protein content and efficient use of space. Black soldier fly larvae (BSFL) are noteworthy because they can be used as feed for various animals including reptiles, dogs, fish, chickens, and pigs. However, if the edible insect industry is to advance, we should use automation to reduce labor and increase production. Consequently, there is a growing demand for sensing technologies that can automate the evaluation of insect quality. This study used short-wave infrared (SWIR) hyperspectral imaging to predict the proximate composition of dried BSFL, including moisture, crude protein, crude fat, crude fiber, and crude ash content. The larvae were dried at various temperatures and times, and images were captured using an SWIR camera. A partial least-squares regression (PLSR) model was developed to predict the proximate content. The SWIR-based hyperspectral camera accurately predicted the proximate composition of BSFL from the best preprocessing model; moisture, crude protein, crude fat, crude fiber, and crude ash content were predicted with high accuracy, with R2 values of 0.89 or more, and root mean square error of prediction values were within 2%. Among preprocessing methods, mean normalization and max normalization methods were effective in proximate prediction models. Therefore, SWIR-based hyperspectral cameras can be used to create automated quality management systems for BSFL.
한반도 주변 해상사고가 증가함에 따라 원격탐사 자료를 활용한 선박탐지 연구의 중요성이 점점 더 강조되고 있다. 이 연구는 고해상도 광학영상에 의존하는 기존 선박탐지 분야에 수백 개 채널의 분광정보를 포함하는 초분광영상을 활용하여 새로운 선박탐지 알고리즘 제시하였다. 두 차례의 현장관측을 통해 측정한 선박 선체의 반사 스펙트럼과 AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) 초분광센서 영상의 선박 및 해수 반사 스펙트럼 간의 분광정합 기법을 적용하였다. 총 다섯 개의 탐지 알고리즘 spectral distance similarity (SDS), spectral correlation similarity(SCS), spectral similarity value (SSV), spectral angle mapper (SAM), spectral information divergence (SID)를 사용하였다. SDS는 선박 일부가 해수로 탐지되는 오차를 나타내었고, SAM은 선박과 해수 사이에 약 1.8배의 차이를 나타내어 명확한 분류 결과를 보여주었다. 이와 더불어 본 연구에서는 각 기법의 최적 임계값을 제시하여 초분광 영상에 포함되어 있는 선박을 분류하였으며 그 결과 SAM, SID가 다른 탐지 알고리즘에 비해 우수한 선박탐지 능력을 보여주었다.
본 연구에서는 초분광 근적외선 영상을 이용하여 광역지역의 흙의 함수비 변화를 간편한 방법으로 예측하기 위해 수행되었다. 근적외선(VNIR) 영역대에서 변화되는 함수비 별로 모래, 화강풍화토(우면산, 구룡산, 대모산, 황령산), 카오리나이트를 초분광 카메라로 촬영하여 반사율을 추출하였고, 흙의 함수비와 가장 연관성 높은 매개변수를 찾기 위하여 선정된 매개변수와 함수비를 변수로하여 Partial Least Square Regression(PLSR) 분석을 이용하여 함수비 예측모델을 구축하였다. 함수비 예측모델을 구축한 결과, 흙의 종류에 관계없이 Area of reflectance(Near-infrared, NIR)의 매개변수가 흙의 함수비와 가장 연관성 높은 매개변수임을 확인하였고, 모든 흙에서 예측모델의 정확도(R2)는 0.9 이상임을 확인하였다. 또한 흙의 실제 함수비와 비교 검증해본 결과, 평균절대백분율(mean absolute percentage error, MAPE)이 15%이내로 확인되었다. 따라서 대상 흙들에서 50% 이내에서 변화되는 함수비 예측 가능성을 확인하였다. 본 연구를 통해 초분광 근적외선 영상을 이용하여 모래, 화강풍화토, 카오리나이트의 함수비 예측 가능성을 확인하였고, 모델의 정확도 개선 및 더 높은 범위의 함수비 예측을 위해서는 흙의 분류모델 개발이 추가적으로 필요하다고 판단된다.
본 연구에서는 발아여부를 고속 대량으로 측정 가능한 초분광 영상 시스템 기반의 비파괴 선별기술을 개발하고자 하였다. 수박의 건전종자 96립과 퇴화종자 96립을 초분광 단파적외선 시스템을 이용하여 측정하였으며, 종자발아검증은 국제종자검정협회(ISTA)규정에 맞추어 5~14일 동안 $25^{\circ}C$에서 BP(between paper)법을 이용하여 실시하였다. 스펙트럼 데이터는 초분광 영상 시스템을 이용하여 데이터를 획득하였으며, 종자 판별모델 개발에는 PLS-DA(partial least square - discriminant analysis)를 적용하였다. PLS-DA분석법을 이용한 종자의 발아여부 판별 결과는 mean normalization을 이용하여 데이터 전처리를 이용할 경우가 가장 우수했으며, calibration의 경우 94.7%의 분류 정확도를 보였으며, validation의 경우 84.2%의 분류 정확도를 나타내어 평균적으로 90.8%의 정확도를 보였다. 이러한 결과는 종자가 퇴화하면서 야기되는 구성성분물질의 차이로 인한 것으로 사료되며, 두 그룹의 분류에 주요한 영향을 끼친 요인의 파악 및 적용을 통해 종자선별기의 개발이 가능함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.