Multispectral image classification of individual tree species is often difficult because of the spectral similarity among species. In this study, we attempted to analyze the suitability of hyperspectral image to classify coniferous tree species. Several image sets and classification methods were applied and the classification results were compared with the ones from multispectral image. Two airborne hyperspectral images (AISA, CASI) were obtained over the study area in the Gwangneung National Forest. For the comparison, ETM+ multispectral image was simulated using hyperspectral images as to have lower spectral resolution. We also used the transformed hyperspectral data to reduce the data volume for the classification. Three supervised classification schemes (SAM, SVM, MLC) were applied to thirteen image sets. In overall, hyperspectral image provides higher accuracies than multispectral image to discriminate coniferous species. AISA-dual image, which include additional SWIR spectral bands, shows the best result as compared with other hyperspectral images that include only visible and NIR bands. Furthermore, MNF transformed hyperspectral image provided higher classification accuracies than the full-band and other band reduced data. Among three classifiers, MLC showed higher classification accuracy than SAM and SVM classifiers.
Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
/
2004.04a
/
pp.159-164
/
2004
SAM(Spectral Angle Mapper) is the method using the similarly of the angle between pairs of signatures instead of the spectral distance(MDC, MLC etc.) for classification or clustering. In this paper, we applied unsupervised techniques(Unsupervised SAM and ISODATA) to the Hyperspectral Image(Hyperion) which has innumerable, narrow and contiguous spectral bands and Multispectral Image(ETM$\^$+/) for the clustering of signatures. The overall measured accuracies of the USAM and ISODATA of multispectral image were 76.52%, 53.91% and the USAM and ISODATA of hyperspectral image were 63.04%, 53.91%. From the results of our test, we report that the Unsupervised SAM is better classfication technique than ISODATA. Also we believe that the "Spectral Angle" can potentially be one of the most accurate classifier not only multispectral images but hyperspectral images.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.52
no.11
/
pp.634-643
/
2003
This paper presents a method for detecting skin tumors on chicken carcasses using hyperspectral images. It utilizes both fluorescence and reflectance image information in hyperspectral images. A detection system that is built on this concept can increase detection rate and reduce processing time, because the procedure for detection can be simplified. Chicken carcasses are examined first using band ratio FCM information of fluorescence image and it results in candidate regions for skin tumor. Next classifier selects the real tumor spots using PCA components information of reflectance image from the candidate regions. For the real world application, real-time processing is a key issue in implementation and the proposed method can accommodate the requirement by using a limited number of features to maintain the low computational complexity. Nevertheless, it shows favorable results and, in addition, uncovers meaningful spectral bands for detecting tumors using hyperspectral image. The method and findings can be employed in implementing customized chicken tumor detection systems.
Zhu, Fuquan;Wang, Huajun;Yang, Liping;Li, Changguo;Wang, Sen
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.8
/
pp.3295-3311
/
2020
With the wide application of hyperspectral images, it becomes more and more important to compress hyperspectral images. Conventional recursive least squares (CRLS) algorithm has great potentiality in lossless compression for hyperspectral images. The prediction accuracy of CRLS is closely related to the correlations between the reference bands and the current band, and the similarity between pixels in prediction context. According to this characteristic, we present an improved CRLS with adaptive band selection and adaptive predictor selection (CRLS-ABS-APS). Firstly, a spectral vector correlation coefficient-based k-means clustering algorithm is employed to generate clustering map. Afterwards, an adaptive band selection strategy based on inter-spectral correlation coefficient is adopted to select the reference bands for each band. Then, an adaptive predictor selection strategy based on clustering map is adopted to select the optimal CRLS predictor for each pixel. In addition, a double snake scan mode is used to further improve the similarity of prediction context, and a recursive average estimation method is used to accelerate the local average calculation. Finally, the prediction residuals are entropy encoded by arithmetic encoder. Experiments on the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 2006 data set show that the CRLS-ABS-APS achieves average bit rates of 3.28 bpp, 5.55 bpp and 2.39 bpp on the three subsets, respectively. The results indicate that the CRLS-ABS-APS effectively improves the compression effect with lower computation complexity, and outperforms to the current state-of-the-art methods.
Journal of Korean Society for Geospatial Information Science
/
v.15
no.3
/
pp.33-39
/
2007
Hyperspectral remote sensing data contain plenty of information about objects, which makes object classification more precise. In this paper, we proposed a new spectral similarity measure, called Spectral Mutual Information (SMI) for hyperspectral image classification problem. It is derived from the concept of mutual information arising in information theory and can be used to measure the statistical dependency between spectra. SMI views each pixel spectrum as a random variable and classifies image by measuring the similarity between two spectra form analogy mutual information. The proposed SMI was tested to evaluate its effectiveness. The evaluation was done by comparing the results of preexisting classification method (SAM, SSV). The evaluation results showed the proposed approach has a good potential in the classification of hyperspectral images.
Eung Jun Lee;Lyu Jin Jun;Young Juhn Lee;Yeong Eun Oh;Sung Hyun Kim;Heung-soe Kim;Ye Ji Kim;Joon Bum Jeong
Journal of fish pathology
/
v.37
no.1
/
pp.89-96
/
2024
Kudoa septempunctata, a myxozoan parasite, usually presents without any signs and primarily infects adult fish. The invasive diagnostic methods, such as tissue biopsy, can identify pathogens, but cause economic losses because they require killing the fish. In this study, we conducted a monitoring of four fish farms located on Jeju Island, to investigate the potential for non-invasive diagnosis of K. septempunctata using hyperspectral cameras. It provides spectral information from R000_B000_G000 to R255_B255_G255 for a total of 3,282 olive flounder (Paralichthys olivaceus). Each object is imaged with 2,000 data points, allowing comprehensive spectral analysis by comparing images obtained from negative control objects to positive control objects. Noticeable differences were observed in the brightness or pallor of the positive control images. This suggests the potential utility of hyperspectral imaging as a non-invasive diagnostic tool for detecting K. septempunctata infections in fish populations.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.32
no.3
/
pp.185-190
/
2014
The purpose of this research is to extract spectral reflectance characteristics of concretes through basic experiment on concrete specimens and site experiment on actual concrete structures using a field portable spectrometer and a VNIR hyperspectral sensor. A spectrometer (GER-3700) and a VNIR hyperspectral camera (AisaEagle VNIR Hyperspectral Camera) were utilized for extracting spectral characteristics of concrete specimens. Concretes normally show similar patterns that have correlation above 80%, while the high-strengthened concretes display very different results from the normal-strength concretes. We also made a certain conclusion in the laboratory experiment on concrete specimens that both the spectrometer and the VNIR camera vary in spectral reflectance depending on concrete strengths.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.29
no.1
/
pp.71-80
/
2011
Thresholding is important step for detecting binary change/non-change information in the unsupervised change detection. This study proposes new unsupervised change detection method using Hyperion hyperspectral images, which are expected with data increased demand. A graph is drawn with applying the range average method for the result value through pixel-based similarity measurement, and thresholding value is decided at the maximum distance point from a straight line. The proposed method is assessed in comparison with expectation-maximization algorithm, coner method, Otsu's method using synthetic images and Hyperion hyperspectral images. Throughout the results, we validated that the proposed method can be applied simply and had similar or better performance than the other methods.
A new method for automatic detection of absorption features is proposed. This method is based on the modulus maximum of the scale-space image calculated by continuous wavelet transform. This method is computationally efficient as compared to traditional methods. The continuum removal algorithm is than implemented on the detected absorption features to reduce some additive factors caused by other absorbing of materials. The results show that the chlorophyll absorption features are detected exactly.
Jang Gab-Sue;Sudduth Kenneth A.;Hong Suk-Young;Kitchen Newell R.;Palm Harlan L.
Korean Journal of Remote Sensing
/
v.22
no.3
/
pp.183-197
/
2006
Combinations of visible and near-infrared (NIR) bands in an image are widely used for estimating vegetation vigor and productivity. Using this approach to understand within-field grain crop variability could allow pre-harvest estimates of yield, and might enable mapping of yield variations without use of a combine yield monitor. The objective of this study was to estimate within-field variations in crop yield using vegetation indices derived from hyperspectral images. Hyperspectral images were acquired using an aerial sensor on multiple dates during the 2003 and 2004 cropping seasons for corn and soybean fields in central Missouri. Vegetation indices, including intensity normalized red (NR), intensity normalized green (NG), normalized difference vegetation index (NDVI), green NDVI (gNDVI), and soil-adjusted vegetation index (SAVI), were derived from the images using wavelengths from 440 nm to 850 nm, with bands selected using an iterative procedure. Accuracy of yield estimation models based on these vegetation indices was assessed by comparison with combine yield monitor data. In 2003, late-season NG provided the best estimation of both corn $(r^2\;=\;0.632)$ and soybean $(r^2\;=\;0.467)$ yields. Stepwise multiple linear regression using multiple hyperspectral bands was also used to estimate yield, and explained similar amounts of yield variation. Corn yield variability was better modeled than was soybean yield variability. Remote sensing was better able to estimate yields in the 2003 season when crop growth was limited by water availability, especially on drought-prone portions of the fields. In 2004, when timely rains during the growing season provided adequate moisture across entire fields and yield variability was less, remote sensing estimates of yield were much poorer $(r^2<0.3)$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.