• 제목/요약/키워드: Hyperspectral Images

검색결과 146건 처리시간 0.021초

Clustering of HIRIS data

  • Huan, Nguyen Van;Kim, Hakil;Kim, Sun-Hwa;Lee, Kyu-Sung
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.299-300
    • /
    • 2007
  • Along with the development of imaging sensors, hyperspectral imaging technology is growing rapidly and contributing to many fields of science nowadays. However, the bulky size and complex structure make it difficult to be processed. Focused on in this paper is the clustering utility, implemented in HYVEW, a program involving tools and functions to manipulate with hyperspectral images. The clustering process aims to partition the surface of the imaged area into subregions by grouping the spectra subject to the similarity of spectra.

  • PDF

심층 컨볼루션 신경망을 사용한 초분광 영상의 공간 분광학적 분류 기법 (HyperConv: spatio-spectral classication of hyperspectral images with deep convolutional neural networks)

  • 고세윤;전구;원중호
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.859-872
    • /
    • 2016
  • 초분광 영상 데이터는 픽셀마다 수백 개의 스펙트럼 밴드에 대한 정보가 주어지는 고차원 데이터로, 농업, 식품처리, 광물학, 물리학, 환경학, 지리학 등 광범위한 분야에 활용되고 있다. 그 중 하나는 토지 피복의 분류 문제인데, 이는 자연 재해 예방, 자연 자원 감시, 환경에 대한 정보 수집에 있어서 중요한 문제이다. 하지만 차원의 저주, 시공간적 변동성, 레이블된 데이터의 부족 때문에 토지 피복의 정확한 분류에는 어려움이 따른다. 이 논문에서는 이러한 문제를 해결하기 위해 컨볼루션 신경망에 기반한 새로운 심층 학습 구조를 제안한다. 제안된 구조는 원하는 지점 주변 픽셀의 정보를 컨볼루션 신경망을 통해 처리하고, 그 지점의 스펙트럼 정보를 강조하기 위해 컨볼루션 층의 출력과 스펙트럼 정보를 함께 소프트맥스 분류기의 입력으로 사용한다. 이 구조는 추가적인 특징 추출 과정을 필요로 하지 않고, 그래픽 처리 장치 등을 이용한 병렬화가 간편하다는 점에서 기존 방법들보다 유리하다. 실험 결과, 제안된 구조는 기존에 가장 좋은 성능을 보인 분류기와 비슷하거나 더 좋은 분류 정확도를 보여 좋은 일반화 성능을 보이는 것을 확인할 수 있었다.

Hyperion 영상의 분류를 위한 밴드 추출 (Feature Selection for Image Classification of Hyperion Data)

  • 한동엽;조영욱;김용일;이용웅
    • 대한원격탐사학회지
    • /
    • 제19권2호
    • /
    • pp.170-179
    • /
    • 2003
  • 다중분광 영상의 정확한 지형지물 분류를 수행할 때 고려해야 할 중요한 요소중에 적절한 분류 클래스의 선정과 선정된 클래스의 분리도가 높아지도록 트레이닝 지역(training fields)을 잡는 것은 특히 중요하다. 최근에 이용되고 있는 위성탑재 하이퍼스펙트럴(hyperspectral) 영상은 많은 밴드를 포함하고 있기 때문에 데이터 처리가 어렵고, 잡음(noise)으로 인하여 다중분광 영상보다 분류 결과가 나쁜 경우도 나타난다. 특히 대상지역의 클래스에 따른 트레이닝 지역의 선정시 일부 클래스에서 하이퍼스펙트럴 밴드수에 비해 상대적으로 적은 수의 트레이닝 샘플로 인하여 공분산 행렬의 계산에 어려움이 따른다. 따라서 본 연구에서는 Hyperion 데이터를 이용한 분류를 수행하기 위하여 밴드 추출 방식을 알아보고, 분류영상의 정확도 평가를 통하여 밴드 추출의 효용성을 시험하였다. 밴드를 줄이는 또 다른 방법인 클래스간 분리도에 따른 최적 밴드를 추출하여 분류정확도를 평가하였다. 실험 결과, 밴드 추출이나 클래스 분리도에 따라 선택된 영상의 분류 정확도는 분류자(classifier)에 상관없이 전체 밴드를 사용한 원영상과 유사하게 나타났지만, 사용된 밴드수와 계산 시간은 단축되었다. 분류자는 MLC, SAM, ECHO의 3종류가 사용되었다.

초분광 표적 탐지를 위한 L2,1-norm Regression 기반 밴드 선택 기법 (Band Selection Using L2,1-norm Regression for Hyperspectral Target Detection)

  • 김주창;양유경;김준형;김준모
    • 대한원격탐사학회지
    • /
    • 제33권5_1호
    • /
    • pp.455-467
    • /
    • 2017
  • 초분광 영상을 이용한 표적 탐지를 수행할 때에는 인접한 분광 밴드의 중복성의 문제 및 고차원 데이터로 인해 발생하는 방대한 계산량의 문제점을 해결하기 위한 특징 추출 과정이 필수적이다. 본 연구는 기계 학습 분야의 특징 선택 기법을 초분광 밴드 선택에 적용하기 위해 $L_{2,1}$-norm regression 모델을 이용한 새로운 밴드 선택 기법을 제안하였으며, 제안한 밴드 선택 기법의 성능 분석을 위해 표적이 존재하는 초분광영상을 직접 촬영하고 이를 바탕으로 표적 탐지를 수행한 결과를 분석하였다. 350 nm~2500 nm 파장 대역에서 밴드 수를 164개에서 약 30~40개로 감소시켰을 때 Adaptive Cosine Estimator(ACE) 탐지 성능이 유지되거나 향상되는 결과를 보였다. 실험 결과를 통해 제안한 밴드 선택 기법이 초분광 영상에서 탐지에 효율적인 밴드를 추출해 내며, 이를 통해 성능의 감소 없이 데이터의 차원 감소를 수행할 수 있어 향후 실시간 표적 탐지 시스템의 처리 속도 향상에 도움을 줄 수 있을 것으로 보인다.

초분광 영상을 활용한 국내외 토지피복 분광 라이브러리 정확도 평가 (Accuracy evaluation of domestic and foreign land cover spectral libraries using hyperspectral image)

  • 박근렬;이근상;조기성
    • 지적과 국토정보
    • /
    • 제51권2호
    • /
    • pp.169-184
    • /
    • 2021
  • 최근 초분광 영상을 기반으로 토지피복을 분류하는 연구에서 토지피복 분광 라이브러리가 많이 활용되고 있다. 해외에서는 다양한 기관에서 토지피복 분광 라이브러리를 구축 및 제공하고 있지만, 국내의 경우 토지피복 분광 라이브러리의 구축 및 제공이 부족한 실정이다. 이러한 배경에서 본 연구는 국내 토지피복의 분류 연구에서 국내외 분광 라이브러리의 활용 가능성을 제시하는데 목적이 있다. 분광 라이브러리의 비교분석 및 분광 라이브러리를 이용한 토지피복분류에는 밴드매칭이 요구되며, 본 연구에서는 이를 자동적으로 수행하기 위한 자동화 로직을 제시하였다. 또한 직접 구축한 국내 토지피복 분광 라이브러리와 기구축 해외 토지피복 분광 라이브러리를 비교분석하였으며, 그 결과 직접 구축한 토지피복 분광 라이브러리의 상관계수가 0.974로 가장 높게 나타났다. 최종적으로 정확도 평가를 위해 국내외 토지피복 분광 라이브러리를 이용하여 연구대상지역의 항공 초분광 영상을 SAM기법으로 감독분류 하였으며, 그 결과 직접 구축한 분광 라이브러리의 전체정확도가 91.78%로 가장 높게 나타났다. 정확도 평가 결과 해외 토지피복 분광 라이브러리의 분류항목 중 Soils, Artificial Materials, Coatings는 국내에서도 충분히 피복을 분류하는데 적용 가능할 것으로 판단된다.

무인항공 초분광 영상을 기반으로 한 고도에 따른 퇴적물 함수율 탐지 고찰 (Discussion on Detection of Sediment Moisture Content at Different Altitudes Employing UAV Hyperspectral Images)

  • 이경은;유재형;박찬혁
    • 자원환경지질
    • /
    • 제57권4호
    • /
    • pp.353-362
    • /
    • 2024
  • 본 연구는 무인항공기 기반 초분광 센서를 활용하여 퇴적물의 함수율에 따른 분광학적 반응 특성을 고찰하고, 비행 고도에 따른 함수율 탐지 효율성을 평가하였다. 이를 위해 다양한 함수율을 가진 퇴적물 시료를 대상으로 40m와 80m 고도에서 400~1000nm 파장 대역의 초분광 영상을 획득하고 분석하였다. 퇴적물의 반사도는 함수율이 증가함에 따라 전반적으로 감소하는 경향을 보였다. 함수율과 반사도 사이의 상관관계 분석 결과, 400~900nm 전 영역에서 강한 음의 상관관계(r < -0.8)를 보였다. 랜덤포레스트 기법을 활용한 함수율 탐지모델 구축 결과, 40m와 80m 고도에서의 탐지 정확도는 각각 RMSE 2.6%, R2 0.92와 RMSE 2.2%, R2 0.95로 나타나 고도 간 정확도 차이가 미미함을 확인하였다. 변수 중요도 분석 결과, 600~700nm 대역이 함수율 탐지에 주요한 역할을 하는 것으로 나타났다. 본 연구는 향후 환경 모니터링 분야에서 효율적인 퇴적물의 수분 관리와 자연재해 예측에 활용될 수 있을 것으로 기대된다.

변화탐지를 위한 Hyperion 초분광 영상의 자동 기하보정과 밴드선택에 관한 연구 (A Study on Automatic Coregistration and Band Selection of Hyperion Hyperspectral Images for Change Detection)

  • 김대성;김용일;어양담
    • 한국측량학회지
    • /
    • 제25권5호
    • /
    • pp.383-392
    • /
    • 2007
  • 본 연구는 초분광 영상을 이용한 변화탐지 기법의 전처리 과정 중 하나인 영상간 기하보정과 밴드선택에 초점을 맞추고 있다. 최근 그 성능이 입증된 SIFT(Scale-Invariant Feature Transform) 기법을 이용하여 자동화된 기하보정을 수행하였으며, 분광정보의 불변 특성을 반영하는 PIF(Pseudo-Invariant Feature)를 추출하여 영상의 잡음을 추정함으로써, 변화탐지를 위한 유효 밴드를 선택하였다. 또한, 기대최대화(Expectation-Maximization) 기법을 이용한 객관적인 밴드선택 방법을 구현하였다. 제안된 기법들을 실제 적용하기 위해 Hyperion 영상을 사용하였으며, 영상에 나타나는 보정되지 않은 밴드 및 Striping 잡음의 특성을 부가적으로 제거하였다. 결과를 통해, 변화탐지를 위한 최소한의 요구조건인 0.2화소 이내의 정확도(RMSE)를 만족하는 신뢰도 높은 기하보정을 수행할 수 있었으며, 시각적인 판단에 의존하던 밴드선택을 PIF를 통해 객관화할 수 있음을 확인하였다.

초분광 영상을 활용한 하천수 혼합 유해화학물질 표준 분광라이브러리 구축 방안 (A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image)

  • 권영화;김동수;유호준
    • 한국수자원학회논문집
    • /
    • 제53권10호
    • /
    • pp.845-859
    • /
    • 2020
  • 최근 기후변화와 여름철 고온 등으로 인한 녹조현상, 사고발생으로 인한 화학물질 및 유류 유출 등 수질오염과 관련된 사회적 관심이 높아지고 있다. 수질오염 사례 중 화학사고로 인한 유해화학물질 유출은 인체에 접촉시 인체에 악영향을 끼치며, 대기·수질·토양을 오염시키고 주변 농작물의 변색이나 괴사를 유발하는 등 생태환경에 직접적인 피해가 발생한다. 하천으로 유출가능성이 있는 화학물질은 무색의 수용성인 경우가 많아 육안으로 유출 사실을 확인하기가 어렵다. 화학사고 발생시 화학물질의 탐지는 간이접촉식탐지장비를 이용하거나 화학물질의 유출이 우려되는 곳에 검출센서를 설치해 사고를 감시하고 있다. 이러한 접촉식 센서는 현장인력에 의존적이고, 설치식 검출센서 또한 제한적으로 설치되어 미설치 지역에 대한 능동적 탐지가 어렵다는 한계가 있다. 한편 최근 초분광 영상을 활용하여 물질 고유의 분광특성을 분석함으로써 토지피복, 식생, 수질 등의 식별에 활용되고 있다. 따라서 초분광 센서를 활용한 화학물질 감지 가능성도 보여주고 있지만 연구는 미비한 실정이다. 본 연구에서는 수계로 유출되는 유해화학물질을 식별하기 위하여 접촉식 탐지 기술의 한계를 극복할 수 있는 원격탐사기법과 최신 센서기술을 활용하였다. 유해화학물질 18종을 대상으로 초분광 영상을 이용한 상호 구분이 가능한 지 확인하고자 해당 유해화학물질의 초분광 영상을 촬영하여 분광라이브러리를 구축하였다. 향후 연구를 통해 유해화학물질 분광라이브러리 데이터베이스를 확대하고, 하천 적용에 대한 검증을 실시한 후 실시간 모니터링에 적용할 경우 신속한 화학사고 발생여부 감지 및 대응에 활용할 수 있을 것으로 기대된다.

초분광 영상을 이용한 액비 오염지역의 질산성질소 농도 추정 (Estimation of Nitrate Nitrogen Concentration in Liquid Fertilizer Contaminated Areas using Hyperspectral Images)

  • 임은성;김이슬;한수정;임태양;송원경
    • 한국재난정보학회 논문집
    • /
    • 제16권3호
    • /
    • pp.542-549
    • /
    • 2020
  • 연구목적: 액비의 발효과정에서 생산된 질산성질소는 물의 오염지표로써 본 연구에서는 액비가 살포된 4개의 연구지역을 선정하고, 질산성질소의 오염 농도를 추정할 수 있는 모델을 제작하고자 하였다. 연구방법:현장촬영에 앞서 액비의 비율을 0%, 25%, 50%, 75%, 100%로 5개의 군으로 나누어 스펙트럼 라이브러리를 구축하였다. 스펙트럼의 양상을 토대로 연구지역에서 획득한 초분광 영상에 PLSR (Partial least squares regression) 방법을 적용하였다. 연구결과:구축한 액비의 스펙트럼을 1차, 2차 미분하여 질산성질소의 거동을 확인하였다. 현장실험의 영상을 이용하여 PLSR 농도 추정 모델링을 실시하여 실제 질산성질소의 농도와 비교하였다. 결론: PLSR 농도 추정 모델과 실제 질산성질소의 농도를 비교하였을 때 질산성질소의 농도가 70 mg/kg 이상인 고농도 지역에서 탐지가 가능하다고 판단되었다.

Automatic Method for Contrast Enhancement of Natural Color Images

  • Lal, Shyam;Narasimhadhan, A. V.;Kumar, Rahul
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1233-1243
    • /
    • 2015
  • The contrast enhancement is great challenge in the image processing when images are suffering from poor contrast problem. Therefore, in order to overcome this problem an automatic method is proposed for contrast enhancement of natural color images. The proposed method consist of two stages: in first stage lightness component in YIQ color space is normalized by sigmoid function after the adaptive histogram equalization is applied on Y component and in second stage automatic color contrast enhancement algorithm is applied on output of the first stage. The proposed algorithm is tested on different NASA color images, hyperspectral color images and other types of natural color images. The performance of proposed algorithm is evaluated and compared with the other existing contrast enhancement algorithms in terms of colorfulness metric and color enhancement factor. The higher values of colorfulness metric and color enhancement factor imply that the visual quality of the enhanced image is good. Simulation results demonstrate that proposed algorithm provides higher values of colorfulness metric and color enhancement factor as compared to other existing contrast enhancement algorithms. The proposed algorithm also provides better visual enhancement results as compared with the other existing contrast enhancement algorithms.