• 제목/요약/키워드: Hypersonic Vehicle Guidance

검색결과 2건 처리시간 0.015초

Pseudospectral Model Predictive Control for Exo-atmospheric Guidance

  • Rahman, Tawfiqur;Zhou, Hao;Yang, Liang;Chen, Wanchun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.64-76
    • /
    • 2015
  • This paper suggests applying pseudospectral model predictive method for exo-atmospheric guidance. The method is a fusion of pseudospectral law and model predictive control, in which a two point boundary value problem is formulated using model predictive approach and solved by applying pseudospectral law. In this work, the method is applied to exo-atmospheric guidance with specific target requirement. The existing exo-atmospheric guidance methods suffice general requirements for guidance, but cannot ensure specific target constraints; whereas, the presented method is able to do so. The proposed guidance law is assessed through simulation of perturbed cases, and the tests suggest that the method is able to operate semi-autonomously under control and thrust vector perturbations.

우주비행체의 대기권 재진입 기준궤적 해석 (Reference Trajectory Analysis of Atmosphere Re-entry for Space Vehicle)

  • 이대우;조겸래
    • 한국정밀공학회지
    • /
    • 제17권6호
    • /
    • pp.111-118
    • /
    • 2000
  • The design of reference trajectory with respect to drag acceleration is necessary to decelerate from hypersonic speed safely after atmosphere re-entry of space vehicle. The re-entry guidance design involves trajectory optimization, generation of a reference drag acceleration profile with the satisfaction of 6 trajectory constraints during the re-entry flight. This reference drag acceleration profile can be considered as the reference trajectory. The cost function is composed of the accumulated total heating on vehicle due to the reduction of weight. And a regularization is needed to prevent optimal drag profile from varying too fast and achieve realized trajectory. This paper shows the relations between velocity, drag acceleration and altitude in drag acceleration profile, and how to determine the reference trajectory.

  • PDF