• Title/Summary/Keyword: Hypersonic

Search Result 247, Processing Time 0.026 seconds

Aerodynamic Model Development for Three-dimensional Scramjet Model Based on Two-dimensional CFD Analysis (스크램제트 2차원 모델의 전산해석을 이용한 3차원 비행체의 공력 모델 개발)

  • Han, Song Ee;Shin, Ho Cheol;Park, Soo Hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.65-76
    • /
    • 2020
  • On the initial design process of a scramjet vehicle such as the trajectory prediction, it is inevitable to estimate the aerodynamic performance of a three-dimensional effect. Despite the necessity of intensive computing for the three-dimensional model, it is inefficient in predicting a wide range of aerodynamic performance. In this study, an engineering model for aerodynamic performance was developed based on two-dimensional computational fluid analysis and linearized supersonic inviscid flow theory. Correspondingly, the three-dimension aerodynamic performance relations are presented based on the two-dimensional results. And the additional three-dimensional computation was performed to evaluate the adequacy for the extended relations.

Generation of Time Series Data from Octave Bandwidth SPL of Acoustic Loading Using Interpolation Method (보간법을 이용한 옥타브 밴드폭 음향 하중 SPL의 시계열 데이터 생성)

  • Go, Eun-Su;Kim, In-Gul;Jeon, Minhyeok;Cho, Hyun-Jun;Park, Jae-Sang;Kim, Min-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Thermal protection system structures such as double-panel structures are used on the skin of the fuselage and wings to prevent the transfer of high heat into the interior of an high supersonic/hypersonic aircraft. The thin-walled double-panel skin can be exposed to acoustic loads by high power engine noise and jet flow noise, which can cause sonic fatigue damage. In order to predict the fatigue life of the skin, the octave bandwidth SPL should be calculated as narrow bandwidth PSD or acoustic load history using interpolation method. In this paper, a method of converting the octave bandwidth SPL acoustic load into a narrow bandwidth PSD and reconstructed acoustic load history was investigated. The octave bandwidth SPL was converted to the narrow bandwidth PSD using various interpolation methods such as flat, log and linear scale, and the probabilistic characteristics and fatigue damage results were compared. It was found that average error of fatigue damage index by the log scale interpolation method was relatively small among three methods.

Ablation Behavior of ZrB2-SiC UHTC Composite under Various Flame Angle Using Oxy-Acetylene Torch (산소-아세틸렌 토치의 조사각이 ZrB2-SiC UHTC 복합체 삭마 특성에 미치는 영향)

  • Seung Yong Lee;Jung Hoon Kong;Jung Hwan Song;Young Il Son;Do Kyung Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.553-559
    • /
    • 2022
  • In this work, the ablation behavior of monolith ZrB2-30 vol%SiC (Z30S) composites were studied under various oxy-acetylene flame angles. Typical oxidized microstructures (SiO2/SiC-depleted/ZrB2-SiC) were observed when the flame to Z30S was arranged vertically. However, formation of the outmost glassy SiO2 layer was hindered when the Z30S was tilted. The SiC-depleted region was fully exposed to air with reduced thickness when highly tilted. Traces of the ablated and island type SiO2 were observed at intermediate flame angles, which clearly verified the effect of flame angle on the ablation of the SiO2 layer. Furthermore, the observed maximum surface temperature of the Z30S gradually increased up to 2,200 ℃ proving that surface amorphous silica was continuously removed while monoclinic ZrO2 phase began to be exposed. A proposed ablation mechanism with respect to flame angles is discussed. This observation is expected to contribute to the design of complex-shaped UHTC applications for hypersonic vehicles and re-entry projectiles.

A Study on the Optimization of Ni-ZSM-5 Endothermic Catalyst Preparation for Decomposition of n-Dodecane (n-dodecane 분해를 위한 Ni-ZSM-5 흡열촉매 제조 최적화 연구)

  • Hyeonsu Jeong;Younghee Jang;Ye Hwan Lee;Sung Chul Kim;Byung Hun Jeong;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.619-625
    • /
    • 2023
  • In order to solve problems caused by the heat load of hypersonic aircraft, this study examined the optimization of the Si/Al ratio of the catalyst and nickel ion exchange to improve the performance of the hydrocarbon decomposition reaction (endothermic reaction). It was confirmed that the catalysts prepared through Si/Al ratio optimization and nickel ion exchange showed about 10% improvement in heat absorption performance compared to thermal cracking at 4 MPa and 550 ℃. FT-IR and NH3-TPD analyses were found to identify factors affecting activity changes, and it was observed that the Si/Al ratio of the HZSM-5 catalyst was closely correlated with acid site development and catalytic activity. In addition, TGA and O2-TPO analyses were conducted to observe the carbon deposition inhibition properties of the nickel-added catalyst.

Quasi-Transient Method for Thermal Response of Blunt Body in a Supersonic Flow (준-비정상해석 기법을 통한 초음속 유동 내 무딘 물체의 열응답 예측)

  • Bae, Hyung Mo;Kim, Jihyuk;Bae, Ji-Yeul;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.495-500
    • /
    • 2017
  • In the boundary layer of supersonic or hypersonic vehicles, there is the conversion from kinetic energy to thermal energy, called aerodynamic heating. Aerodynamic heating has to be considered to design supersonic vehicles, because it induces severe heat flux to surface. Transient heat transfer analysis with CFD is used to predict thermal response of vehicles, however transient heat transfer analysis needs excessive computing powers. Loosely coupled method is widely used for evaluating thermal response, however it needs to be revised for overestimated heat flux. In this research, quasi-transient method, which is combined loosely coupled method and conjugate heat transfer analysis, is proposed for evaluating thermal response with efficiency and reliability. Defining reference time of splitting flight scenario for transient simulation is important on accuracy of quasi-transient method, however there is no algorithm to determine. Therefore the research suggests the algorithm with various flow conditions to define reference time. Supersonic flow field of blunt body with constant acceleration is calculated to evaluate quasi-transient method. Temperature difference between transient and quasi-transient method is about 11.4%, and calculation time reduces 28 times for using quasi-transient method.

USN's Efforts to Rebuild its Combat Power in an Era of Great Power Competition (강대국 간의 경쟁시대와 미 해군의 증강 노력)

  • Jung, Ho-Sub
    • Strategy21
    • /
    • s.44
    • /
    • pp.5-27
    • /
    • 2018
  • The purpose of this paper is to look at USN's efforts to rebuild its combat power in the face of a reemergence of great powers competition, and to propose some recommendations for the ROKN. In addition to the plan to augment its fleet towards a 355-ships capacity, the USN is pursuing to improve exponentially combat lethality(quality) of its existing fleet by means of innovative science and technology. In other words, the USN is putting its utmost efforts to improve readiness of current forces, to modernize maintenance facilities such as naval shipyards, and simultaneously to invest in innovative weapons system R&D for the future. After all, the USN seems to pursue innovations in advanced military Science & Technology as the best way to ensure continued supremacy in the coming strategic competition between great powers. However, it is to be seen whether the USN can smoothly continue these efforts to rebuild combat strength vis-a-vis its new competition peers, namely China and Russian navy, due to the stringent fiscal constraints, originating, among others, from the 2011 Budget Control Act effective yet. Then, it seems to be China's unilateral and assertive behaviors to expand its maritime jurisdiction in the South China Sea that drives the USN's rebuild-up efforts of the future. Now, some changes began to be perceived in the basic framework of the hitherto regional maritime security, in the name of declining sea control of the USN as well as withering maritime order based on international law and norms. However, the ROK-US alliance system is the most excellent security mechanism upon which the ROK, as a trading power, depends for its survival and prosperity. In addition, as denuclearization of North Korea seems to take significant time and efforts to accomplish in the years to come, nuclear umbrella and extended deterrence by the US is still noting but indispensible for the security of the ROK. In this connection, the naval cooperation between ROKN and USN should be seen and strengthened as the most important deterrents to North Korean nuclear and missile threats, as well as to potential maritime provocation by neighboring countries. Based on these observations, this paper argues that the ROK Navy should try to expand its own deterrent capability by pursuing selective technological innovation in order to prevent this country's destiny from being dictated by other powers. In doing so, however, it may be too risky for the ROK to pursue the emerging, disruptive innovative technologies such as rail gun, hypersonic weapon... etc., due to enormous budget, time, and very thin chance of success. This paper recommends, therefore, to carefully select and extensively invest on the most cost-effective technological innovations, suitable in the operational environments of the ROK. In particular, this paper stresses the following six areas as most potential naval innovations for the ROK Navy: long range precision strike; air and missile defense at sea; ASW with various unmanned maritime system (UMS) such as USV, UUV based on advanced hydraulic acoustic sensor (Sonar) technology; network; digitalization for the use of AI and big data; and nuclear-powered attack submarines as a strategic deterrent.

Eurasian Naval Power on Display: Sino-Russian Naval Exercises under Presidents Xi and Putin (유라시아 지역의 해군 전력 과시: 시진핑 주석과 푸틴 대통령 체제 하에 펼쳐지는 중러 해상합동훈련)

  • Richard Weitz
    • Maritime Security
    • /
    • v.5 no.1
    • /
    • pp.1-53
    • /
    • 2022
  • One manifestation of the contemporary era of renewed great power competition has been the deepening relationship between China and Russia. Their strengthening military ties, notwithstanding their lack of a formal defense alliance, have been especially striking. Since China and Russia deploy two of the world's most powerful navies, their growing maritime cooperation has been one of the most significant international security developments of recent years. The Sino-Russian naval exercises, involving varying platforms and locations, have built on years of high-level personnel exchanges, large Russian weapons sales to China, the Sino-Russia Treaty of Friendship, and other forms of cooperation. Though the joint Sino-Russian naval drills began soon after Beijing and Moscow ended their Cold War confrontation, these exercises have become much more important during the last decade, essentially becoming a core pillar of their expanding defense partnership. China and Russia now conduct more naval exercises in more places and with more types of weapons systems than ever before. In the future, Chinese and Russian maritime drills will likely encompass new locations, capabilities, and partners-including possibly the Arctic, hypersonic delivery systems, and novel African, Asian, and Middle East partners-as well as continue such recent innovations as conducting joint naval patrols and combined arms maritime drills. China and Russia pursue several objectives through their bilateral naval cooperation. The Treaty of Good-Neighborliness and Friendly Cooperation Between the People's Republic of China and the Russian Federation lacks a mutual defense clause, but does provide for consultations about common threats. The naval exercises, which rehearse non-traditional along with traditional missions (e.g., counter-piracy and humanitarian relief as well as with high-end warfighting), provide a means to enhance their response to such mutual challenges through coordinated military activities. Though the exercises may not realize substantial interoperability gains regarding combat capabilities, the drills do highlight to foreign audiences the Sino-Russian capacity to project coordinated naval power globally. This messaging is important given the reliance of China and Russia on the world's oceans for trade and the two countries' maritime territorial disputes with other countries. The exercises can also improve their national military capabilities as well as help them learn more about the tactics, techniques, and procedures of each other. The rising Chinese Navy especially benefits from working with the Russian armed forces, which have more experience conducting maritime missions, particularly in combat operations involving multiple combat arms, than the People's Liberation Army (PLA). On the negative side, these exercises, by enhancing their combat capabilities, may make Chinese and Russian policymakers more willing to employ military force or run escalatory risks in confrontations with other states. All these impacts are amplified in Northeast Asia, where the Chinese and Russian navies conduct most of their joint exercises. Northeast Asia has become an area of intensifying maritime confrontations involving China and Russia against the United States and Japan, with South Korea situated uneasily between them. The growing ties between the Chinese and Russian navies have complicated South Korean-U.S. military planning, diverted resources from concentrating against North Korea, and worsened the regional security environment. Naval planners in the United States, South Korea, and Japan will increasingly need to consider scenarios involving both the Chinese and Russian navies. For example, South Korean and U.S. policymakers need to prepare for situations in which coordinated Chinese and Russian military aggression overtaxes the Pentagon, obligating the South Korean Navy to rapidly backfill for any U.S.-allied security gaps that arise on the Korean Peninsula. Potentially reinforcing Chinese and Russian naval support to North Korea in a maritime confrontation with South Korea and its allies would present another serious challenge. Building on the commitment of Japan and South Korea to strengthen security ties, future exercises involving Japan, South Korea, and the United States should expand to consider these potential contingencies.

  • PDF