• Title/Summary/Keyword: Hypersonic

Search Result 247, Processing Time 0.024 seconds

Ultra-high Temperature Ceramics-Ceramic Matrix Composites (UHTC-CMC) (섬유강화 초고온 세라믹스 복합재료(UHTC-CMC))

  • Lee, Sea-Hoon;Lun, Feng;Chung, Kyeongwoon
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.94-101
    • /
    • 2017
  • Ultra-high temperature ceramics (UHTC) such as $ZrB_2$, ZrC, $HfB_2$, HfC and TaC has been recently actively investigated for the application as components such as nose-cone, rocket nozzle and leading edge of hypersonic systems. However, the application has been limited by various reasons. The brittleness of the materials and consequent low thermal shock resistance is one of the reasons. The property can be improved through the fabrication of ceramic matrix composites. In this paper, the concept of UHTC and the fabrication process and testing of UHTC-based ceramic matrix composites (UHTC-CMC) were briefly reviewed. Also, international activities regarding the fabrication of UHTC-CMC were summarized and a UHTC-CMC project, which was performed in Korea, was introduced.

Research Activities of Transpiration Cooling for High-Performance Flight Engines (고성능 비행체 엔진을 위한 분출냉각의 연구동향)

  • Hwang, Ki-Young;Kim, You-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.966-978
    • /
    • 2011
  • Transpiration cooling is the most effective cooling technique for the high-performance liquid rockets and air-breathing engines operating in aggressive environments with higher pressures and temperatures. When applying transpiration cooling, combustor liners and turbine blades/vanes are cooled by the coolant(air or fuel) passing through their porous walls and also the exit coolant acting as an insulating film. Practical implementation of the cooling technique has been hampered by the limitations of available porous materials. But advances in metal-joining techniques have led to the development of multi-laminate porous structures such as Lamilloy$^{(R)}$ fabricated from several diffusion-bonded, etched metal thin sheets. And also with the availability of lightweight, ceramic matrix composites(CMC), transpiration cooling now seems to be a promising technique for high-performance engine cooling. This paper reviews recent research activities of transpiration cooling and its applications to gas turbines, liquid rockets, and the engines for hypersonic vehicles.

Current Status of Ceramic Composites Technology for Space Vehicle (우주비행체용 세라믹 복합재료 해외기술 동향)

  • Lee, Ho-Sung
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.76-84
    • /
    • 2009
  • In this review an attempt is made to give the background to the current trends in foreign developments in the ceramic matrix composites for space vehicles. The lightweight and high temperature specific modulus properties of ceramic composites have continued to develop for designing advanced propulsion structures and for increasing space vehicle performances. Those applications require advanced materials with good resistance to high temperatures, to oxidation environments and to mechanical stresses. The advantages of ceramic matrix composites are the low specific weight, the high specific strength over a wide temperature ranges, and their good damage tolerance compared to tungsten, pyrographites and polycrystalline graphites. Due to these advantages ceramic matrix composites are currently used in rocket engine chamber, nozzle, solar array, radar antenna, mirror support structures, hypersonic leading edge articles, heat shields, reentry vehicle nose tips, and radiators for spacecraft. Various processes are discussed together with examples of current application so that some of the advanced technologies can be possibly applied to Korean space technology.

  • PDF

Quasi 1D Nonequilibrium Analysis and Validation for Hypersonic Nozzle Design of Shock Tunnel (충격파 풍동의 극초음속 노즐 설계를 위한 Quasi 1D 비평형 해석 및 검증)

  • Kim, Seihwan;Lee, Hyoung Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.652-661
    • /
    • 2018
  • It is necessary to resolve the absolute velocity as well as Mach number to reflect the high temperature effect in high speed flow. So this region is classified as high enthalpy flows distinguished from high speed flows. Many facilities, such as arc-jet, shock tunnel, etc. has been used to obtain the high enthalpy flows at the ground level. However, it is difficult to define the exact test condition in this type of facilities, because some chemical reactions and energy transfer take place during the experiments. In the present study, a quasi 1D code considering the thermochemical non-equilibrium effect is developed to effectively estimate the test condition of a shock tunnel. Results show that the code gives reasonable solution compared with the results from the known experiments and 2D axisymmetric simulations.

A Study on Adaptive Design of Experiment for Sequential Free-fall Experiments in a Shock Tunnel (충격파 풍동에서의 연속적 자유낙하 실험에 대한 적응적 실험 계획법 적용 연구)

  • Choi, Uihwan;Lee, Juseong;Song, Hakyoon;Sung, Taehyun;Park, Gisu;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.798-805
    • /
    • 2018
  • This study introduces an adaptive design of experiment (DoE) approach for the hypersonic shock-tunnel testing. A series of experiments are conducted to model the pitch moment coefficient of a cone as the function of the angle of attack and the pitch rate. An algorithm to construct the trajectory of the test model from the images obtained by the high-speed camera is developed to effectively analyze multiple time series experimental data. An adaptive DoE procedure to determine the experimental point based on the analysis results of the past experiments using the algorithm is proposed.

Effects of chemistry in Mars entry and Earth re-entry

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.5
    • /
    • pp.581-594
    • /
    • 2018
  • This paper is the follow-on of a previous paper by the author where it was pointed out that the forthcoming, manned exploration missions to Mars, by means of complex geometry spacecraft, involve the study of phenomena like shock wave-boundary layer interaction and shock wave-shock wave interaction also along the entry path in Mars atmosphere. The present paper focuses the chemical effects both in the shock layer and on the surface of a test body along the Mars orbital entry and compares these effects with those along the Earth orbital re-entry. As well known, the Mars atmosphere is almost made up of Carbon dioxide whose dissociation energy is even lower than that of Oxygen. Therefore, although the Mars entry is less energized than the Earth re-entry, one can expect that the effects of chemistry on aerodynamic quantities, both in the shock layer and on a test body surface, are different from those along the Earth re-entry. The study has been carried out computationally by means of a direct simulation Monte Carlo code, simulating the nose of an aero-space-plane and using, as free stream parameters, those along the Mars entry and Earth re-entry trajectories in the altitude interval 60-90 km. At each altitude, three chemical conditions have been considered: 1) gas non reactive and non-catalytic surface, 2) gas reactive and non-catalytic surface, 3) gas reactive and fully-catalytic surface. The results showed that the number of reactions, both in the flow and on the nose surface, is higher for Earth and, correspondingly, also the effects on the aerodynamic quantities.

Evaluation of Performance of Atmospheric Re-Entry System for the Uncertainties Using the Monte-Carlo Simulation (몬테-칼로 모의실험을 이용한 대기권 재진입 시스템의 불확실성 성능 평가)

  • Lee, Dae-Woo;Cho, Kyeum-Rae;Oh, Se-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.51-60
    • /
    • 2002
  • The Monte-Carlo simulation of statistical analysis is used to investigate the final conditions of states as well as the footprint boundaries resulting from the atmospheric re-entry dispersions. The re-entry dispersions in this paper are specified by a $7\times7$ covariance matrix of latitude, longitude, altitude, bank angle, flight path angle, heading error, and range at entry velocity. The error sources that affect these at re-entry for a deboost are the uncertainties associated with atmospheric density and temperature, initial errors, wind, and estimation error of aerodynamic coefficients. Using $3{\sigma}_n$ deviations of these errors and a nominal flight trajectory, the covariance matrix of state variables can be determined by performing a trajectory error analysis. Major considerations in the application of the Monte-Carlo method are the simulation of perturbed trajectories, bank reversal, and determination of the impact points for each of these trajectories. This paper analyzes the results of uncertainties from the viewpoint of aero-coefficients and bank reversal.

Development and Application of the Super High Temperature Thermal Test Equipment (초고온 열하중 부가장치 개발 및 적용)

  • Jun, Joon-Tak;Kang, Hui-Won;Yang, Myung-Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • This paper describes test result of the Supersonic Wing Structure and the utility of thermal test equipment, which is possible to heat rapidly and continuously above $1,000^{\circ}C$, the durability and reliability of which are improved compared with the existing equipment. Through the test, we could predict the amount of strength reduction of the wing due to aerodynamic heating, caused by exposure of high temperature. Recently the aerodynamic heating temperature of the supersonic flying object is rapidly increased. It is possible to carry out the High Temperature Strength Test on the hypersonic speed flying object with the newly designed thermal test equipment. Because of that, we can upgrade the High Temperature Strength Structure Test technique and test reliability.

Ramjet Mode Combustion Test for a Dual-Mode Ramjet Engine Model with a Large Backward-Facing Step (큰 후향 계단이 있는 이중 모드 램젯 엔진 모델의 램젯 모드 연소 시험)

  • Yang, Inyoung;Lee, Kyung-jae;Lee, Yang-ji;Kim, Chun-taek
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.83-90
    • /
    • 2016
  • Ramjet mode combustion test was performed for a dual-mode ramjet engine model. The engine model consists of an air intake, a combustor and a nozzle. The combustor in the model has a large backward-facing step, designed to be used as a part of a rocket-based combined cycle engine. The test was performed at the flight speed of Mach 5 and the altitude of 24 km. Strong combustion was established only when the fuel was injected from both of the bottom-side and cowl-side wall. When the total fuel stoichiometric ratio was 1.0, distributed as 0.5 on the cowl side and 0.5 on the bottom side, the flow became subsonic at some portion in the combustor by thermal choking, i.e., ramjet mode was established for this condition.

Combustion Test for a Supersonic Combustor Using a Direct-Connected Facility (직결형 설비를 이용한 초음속 연소기 연소 시험)

  • Yang, Inyoung;Lee, Kyung-Jae;Lee, Yang-Ji;Lee, Sanghoon;Kim, Hyungmo;Park, Poomin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • A combustion test for a supersonic combustor was conducted using a direct-connected type supersonic combustor test facility. The facility was verified for the capability of simulating required flow conditions. The test condition was maintained at Mach 2.0, $915^{\circ}C$ and 496 kPa for 15 s. Using gaseous hydrogen as the fuel, the combustor model was also tested for its ignition and flame holding capability at the fuel equivalence ratio of 0.12. Combustion efficiency was 71%, and the supersonic flow regime was obtained at this test condition.