• 제목/요약/키워드: Hypereutectic Al-18%Si alloy

검색결과 4건 처리시간 0.018초

과공정 Al-18% Si 합금의 레올로지 성형시 기계적 교반을 이용한 입자 미세화 연구 (Studies on Grain Size Refinement for Rheocasting of Hypereutectic Al-18% Si by Using Sieve Type Mechanical Stirrer)

  • 강용기;박진욱;강성수;강충길;문영훈
    • 소성∙가공
    • /
    • 제9권4호
    • /
    • pp.389-394
    • /
    • 2000
  • The studies on gram size refinement for rheocast processing of hypereutectic Al-18%Si alloys have been investigated in the present study. To increase the efficiency of mechanical stirring, sieve type stirrer are newly designed and implemented for rheocasting of hypereutectic Al-18%Si alloy. Mechanical stirring of semi-solid slurry by using sieve type mechanical stirrer results in morphological changes of the primary Si particles, from angular rod shape to near spherical shape and uniform distribution of proeutectic Si. The remarkable spheroidization of Primary Si Particles and distributional uniformity of proeutectic Si show well the efficiency of sieve type mechanical stirring method which can accelerate the coalescence-fracture-wear of the individual particles by strong turbulent flow between lattices during rotation of sieve type stirrer.

  • PDF

단결정 다이아몬드 절삭에 의한 과공정 Al-Si합금의 경제성에 관한 연구 (A study on the economics of hypereutectic Al-Si alloy cutting with single crystal diamond tool)

  • 이은상;김정두
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1096-1105
    • /
    • 1994
  • A hypereutectic Aluminum-Silicon Alloy is widely used in the parts of automobile because of high-resistance and good strength. In this study, the cutting of hypereutectic A1-Si alloy for economical production was investigated by simulation. Tool life and the extraction rate of Si particles is inversely proportional to the depth of cut. When decreasing the depth of cut, the reduction of single crystal diamond tool cost and tool change time is achieved.

과공정 Al-Si 합금의 반고상 재가열시 미세조직 변화 (Microstructural Changes during Semi-solid State in Hypereutectic Al-Si Alloy)

  • 김인준;김도향
    • 한국주조공학회지
    • /
    • 제18권6호
    • /
    • pp.541-549
    • /
    • 1998
  • Microstructural characteristics of hypereutectic Al-Si alloys during reheating at semi-solid temperature have been investigated. The size and morphology of primary Si particles in wedge-type mold-cast ingot has been compared with hot-rolled sheet and Si particulate reinforced Al composite. Effects of P and Sr addition on the morphological changes of primary Si particles have been also investigated. Observation of the solidification microstructures of the wedge-type mold-cast ingot at different cooling rates showed that alloying elements such as P and Sr affect the morphology of Si particles, especially in the area solidified at a slow cooling rate. Negligible change in the size of primary crystals was observed after reheating experiment, but ${\alpha}-halo$ formed around the Si particles and fine particles of Si precipitated in the surrounding area of the Si particles. In addition, there seemed to be no coarsening with increasing of holding time and the region of ${\alpha}-halo$ being decreased. Nucleation and recrystallization was accelerated with addition of alloying elements during hot rolling resulting in a decrease of primary Si particle size. In the case of extruded specimens, morphological change of primary Si particles was not observed after reheating. No ${\alpha}-halo$ formation was observed in Si reinforced Al composite because of the oxide film formed on the Si particles which acted as a diffusion barrier between substrate and the primary Si particles.

  • PDF

Al-Si합금(合金)의 CFR 과 MDE 에 미치는 냉각속도(冷却速度)의 영향(影響) (The Influence of Cooling Rates on the CFR and the MDE of Al-Si Alloys.)

  • 권혁무;김수영
    • 한국주조공학회지
    • /
    • 제4권4호
    • /
    • pp.14-19
    • /
    • 1984
  • In order to clarify the solidification mechanism of Al-Si alloy, Mushy Degree of Eutectic Solidification (MDE) and Centerline Feeding Resistance (CFR) were systematically studied by casting with various compositions of $Al-(6{\sim}18%)$ Si alloys into several kinds of molds having different cooling rates. The results are as follows: 1. CFR% increases slightly as solute concentration increases, but decreases remarkably as the cooling rate of the mold increases, that is, the composition dependence of the alloys has more effect on the change of CFR% than that of the mold cooling rate. 2. The composition dependence of MDE value has the same tendency as that of Degree of Eutectic Solidification (DES). MDE value within the range of hypereutectic composition is larger than that of hypoeutectic and it represents the maximum value at eutectic composition. The higher the cooling rate is, the less the MDE value is.

  • PDF