• Title/Summary/Keyword: Hyper-Peritectic Alloy

Search Result 2, Processing Time 0.016 seconds

A Similarity Solution for the Directional Casting of Peritectic Alloys in the Presence of Shrinkage-Induced Flow (체적수축유동이 있는 포정합금의 방향성주조에 대한 상사해)

  • Yu, Ho-Seon;Jeong, Jae-Dong;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.485-495
    • /
    • 2001
  • This paper presents a similarity solution for the directional casting of binary peritectic alloys in the presence of shrinkage-induced flow. The present model retains essential ingredients of alloy solidification, such as temperature-solute coupling, macrosegregation, solid-liquid property differences, and finite back diffusion in the primary phase. An algorithm for simultaneously determining the peritectic and liquidus positions is newly developed, which proves to be more efficient and stable than the existing scheme. Sample calculations are performed for both hypo- and hyper-peritectic compositions. The results show that the present analysis is capable of properly resolving the solidification characteristics of peritectic alloys so that it can be used for validating numerical models as a test solution.

Effect of Convection on the Solidification Microstructure of Hyper-Peritectic Systems (과포정계 합금의 응고조직에 미치는 대류의 영향)

  • Park, Byeong-Gyu;Kim, Mu-Geun;Park, Jang-Sik;Kim, Geun-O;Choe, Jae-Gwang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.958-966
    • /
    • 2001
  • This study has examined the microstructural development in the Bridgman type directional solidification of hyper-peritectic Sn-Cd alloys, and the temperature and flow field have been numerically simulated to see if there is any change induced by convection. The directional solidification experiments carried out in quartz tubes with inside diameters of 0.4∼6mm showed that the resulting microstructures are clearly dependent on the size of tube diameters. The bigger ampoules where the effect of convection is highly expected produced saw-like structures resulting from the primary $\alpha$ and peritectic $\beta$ phase growing together at a planar solid-liquid front, with the former being surrounded by the latter. In the smaller ampoules, where the effect of convection is expected low however, the saw structure disappears, and as is understood from the theoretical prediction based on diffusion-controlled solidification the initial growth of the primary $\alpha$ phase is replaced by the nucleation of the peritectic $\beta$ phase whose growth continues to the end of the solidification.