• Title/Summary/Keyword: Hydrothermal reaction

Search Result 402, Processing Time 0.025 seconds

The preparation of Zinc-Silicate phosphors by noble technique (분무열분해 전구체를 사용한 규산아연 형광물질의 합성에 관한 연구)

  • 김영일;이경희
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.370-376
    • /
    • 1998
  • The powder preparation of Zinc-Silicate phosphors compound was studied by hydrothermal reaction starting from the precursor which prepared by spray pyrolysis method. This process protect including of impuritied from crushing process and Mineralizing in hydrothermal reactions. Using spray pyrolysis precursor, ${\alpha}-Zn_2SiO_4$ powder was prepared by the hydrothermal reaction under $250^{\circ}C$.

  • PDF

Effects of Hydrothermal Conditions on the Morphology of Hematite Particles (Hematite 입자형상에 미치는 수열반응조건의 영향)

  • 변태봉;손진군
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.117-128
    • /
    • 1994
  • Hematite particles were obtained by hydrothermal reaction of ferric hydroxide in the presence of small amount of citric acid which is acted as crystal growth controller. The effects of hydrothermal reaction condition son the morphology and crystal structure of powder were investigated using X-ray, TEM and FT-IR. Ellipsoidal or rectangular hematite particles were formed in the range of pH 10.75~11.75 as initial basicity of reactants and 3$\times$10-5 ~9$\times$10-5 mol as citric acid content. Crystallization of hematite was inhibited in the range of pH9. 0~10.5 and above citric acid content of $1.5\times$10-4 mol. Hematite particle length and aspect ratio were decreased gradually with increasing of citric acid content. Hematite particles formed at 14$0^{\circ}C$ exhibited particle properties with the length of 0.7 ${\mu}{\textrm}{m}$ and aspect ratio of 8. Hematite particles having a good acicular-type were not obtained above 22$0^{\circ}C$.

  • PDF

The Study on the Preparation of Fluorescence Willemite Powders by Hydrothermal, Wet and Solid State Reaction (형광성 Willemite의 수열, 습식 및 고상 합성에 관한 연구)

  • 이경희;이병하;남경호;이재영
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.74-78
    • /
    • 1991
  • Willemite powders which have been prepared by solid state reaction were easy to intermixed impurities, and particle surfaces were demaged in the progress of crushing. The above defacts were easy to accompany non-crystallization for mechanochemical effects and luminescence efficiency was deteriorated. The goal of this study improve each of defacts, and synthesize high purity and fine Mn doped willemite powders by wet and hydrothermal methods without crushing progress. It has been experimentally verified that the single phase Zn1.98Mn0.02SiO4 willemite powders which prepared by hydrothermal synthes is at 220$^{\circ}C$ for 10 hours in 2N KOH solution. The products are like needle and composition is the same with starting composition.

  • PDF

Surface Potential Behavior of Nano $CeO_2$ Particles in Aqueous Media (수계분산매체에서 나노 $CeO_2$ 입자의 계면전위 거동)

  • 이태원;백운규;최성철;이상훈;임형섭;김철진
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.721-725
    • /
    • 2000
  • In this study, the dispersion stability of nano-sized CeO2 particles, synthesized by hydrothermal method in aqueous was evaluated from observing the surface potential behavior of CeO2 particle synthesized by solid state reaction. The isoelectric point(IEP) of nano-sized CeO2 synthesized by hydrothermal synthesis was found to be pH 9 contrary to the isoelectric point of micro-sized CeO2 synthesized by solid state reaction at pH 6.7. IEP was shifted to pH 2.0 as the addition of D-3019 from 0.1 to 1.0 wt%. The surface potential of CeO2 particles synthesized by hydrothermal synthesis was reduced as the addition of B-1001 used as a binder without change of IEP because the absorption of B-1001 polymer on the CeO2 particles shifted the shear plane of CeO2 particles outward away from the surface. This surface potential behavior was well correlated with the dispersion stability of slurry.

  • PDF

Synthesis and crystallization of nanosized zirconia powder using hydrothermal process (수열반응에 의한 나노 지르코니아 분말의 합성 및 결정화)

  • 노희진;이종국;서동석;황규홍
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.126-132
    • /
    • 2002
  • The nanocrystalline zirconia powder with anisotropic shapes was synthesized by hydrothermal treatment of the tetragonal zirconia prepared by aging the zirconium hydroxide precipitate, which was obtained from the reaction between $ZrOCl_2{\cdot}8H_2O$ and KOH solutions under the fixed pH of 13.5, at $100^{\circ}C$ for 24 h. With increasing the hydrothermal reaction temperature and time, the fraction of tetragonal phase with spherical zirconia decreased, whereas, relatively the fraction of monoclinic phase with spindle-like and rod shape zirconia increased. As increased concentration of the NaOH solution it promoted the particle size to become larger and the crystalline phase to transform tetragonal to monoclinic. However, the specific surface area at the early stage of the reaction increased and subsequently decreased because of grain growth in powder with longer reaction time.

Comparison of Characteristics of Acid-catalyzed Hydrothermal Fractionation for Production of Hemicellulose Hydrolyzate from Agricultural Residues (농경잔류물로부터 헤미셀룰로오스 가수분해물 생산을 위한 산촉매 열수 분별공정의 특성 비교)

  • Hwang, Jong Seo;Oh, Kyeong Keun;Yoo, Kyung Seun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.414-422
    • /
    • 2022
  • The objective of this work was to investigate the feasibility of acid-catalyzed hydrothermal fractionation for maximum solubilization of the hemicellulosic portion of two typical agricultural residues. The fractionation conditions converted into combined reaction severity (CS) in the range of 1.2-2.9 was used to establish a simple reaction criteria at glance. The hemicellulosic sugar yield of 56.6% was shown when rice straw was fractionated at the conditions at the conditions; 160 ℃ of temperature 0.75% (w/v) of H2SO4, 20 min of reaction time, 1:15 solid/liquid ratio. The hemicellulosic sugar yield of 83.0%, however, was achieved when barley straw was fractionated at the conditions at the conditions; 150 ℃ of temperature 0.75% (w/v) of H2SO4, and 15 min of reaction time, 1:10 solid/liquid ratio. For barley straw, acid-catalyzed hydrothermal fractionation could be effectively performed. After the fractionation process, the remaining fractionated solids were 48.5% and 57.5% from raw rice and barley straws, respectively. The XMG contents in the solid residues decreased from 17.3% and 17.6% to 6.0% and 2.6%, which corresponded to 16.7% and 8.5% on the basis of the raw straws, respectively. In another way, only 5.6% of cellulose and 8.5% of XMG were lost due to excessive decomposition during the acid-catalyzed hydrothermal fractionation of barley straw, compared to cellulose and XMG losses of 6.4% and 26.6% in rice straw. Hemicellulosic sugars from the rice straw were considered more over-decomposed due to the somewhat higher reaction severity at the acid-catalyzed hydrothermal fractionation.

Effect of hydrothermal processing on ginseng extract

  • Ryu, Jebin;Lee, Hun Wook;Yoon, Junho;Seo, Bumjoon;Kwon, Dong Eui;Shin, Un-Moo;Choi, Kwang-joon;Lee, Youn-Woo
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.572-577
    • /
    • 2017
  • Background: Panax ginseng Meyer is cultivated because of its medicinal effects on the immune system, blood pressure, and cancer. Major ginsenosides in fresh ginseng are converted to minor ginsenosides by structural changes such as hydrolysis and dehydration. The transformed ginsenosides are generally more bioavailable and bioactive than the primary ginsenosides. Therefore, in this study, hydrothermal processing was applied to ginseng preparation to increase the yields of the transformed ginsenosides, such as 20(S)-Rg3, Rk1, and Rg5, and enhance antioxidant activities in an effective way. Methods: Ginseng extract was hydrothermally processed using batch reactors at $100-160^{\circ}C$ with differing reaction times. Quantitative analysis of the ginsenoside yields was performed using HPLC, and the antioxidant activity was qualitatively analyzed by evaluating 2,2'-azino-bis radical cation scavenging, 2,2-diphenyl-1-picrylhydrazyl radical scavenging, and phenolic antioxidants. Red ginseng and sun ginseng were prepared by conventional steaming as the control group. Results: Unlike steaming, the hydrothermal process was performed under homogeneous conditions. Chemical reaction, heat transfer, and mass transfer are generally more efficient in homogeneous reactions. Therefore, maximum yields for the hydrothermal process were 2.5-25 times higher than those for steaming, and the antioxidant activities showed 1.6-4-fold increases for the hydrothermal process. Moreover, the reaction time was decreased from 3 h to 15-35 min using hydrothermal processing. Conclusion: Therefore, hydrothermal processing offers significant improvements over the conventional steaming process. In particular, at temperatures over $140^{\circ}C$, high yields of the transformed ginsenosides and increased antioxidant activities were obtained in tens of minutes.