• Title/Summary/Keyword: Hydrostatic oil bearings

Search Result 4, Processing Time 0.02 seconds

A Study of the Characteristics of Journal Bearings and the Rotor Dynamics of Turbo Machinery (저어널 베어링 의 특성 과 터어보 기계류 의 축진동 에 관한 연구)

  • 한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.469-476
    • /
    • 1983
  • The effects of oil supply conditions on the static and dynamic properties of journal bearings supporting high speed rotors were investigated. The initially unknown hydrostatic pressure in oil pockets were determined by iteration with the aid of the equation of oil flow balance for given oil supply pressure and flow coefficients of oil inlet. For the calculation of dynamic characteristics, the dynamic changes of pressure in lubricating gaps and oil pockets were linearised with a perturbation method.

The Static Characteristics of Hydrostatic Journal Bearings (정압저어널 베어링의 정특성 해석)

  • Park, Cheon-Hong;Kim, Seok-Il;Lee, Hu-Sang
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.21-27
    • /
    • 1988
  • In this study, a series of experiments and analyses are performed to estimate the static characteristics of hydrostatic journal bearing such as load capacity, pressure change in each recess, eccentricity of spindle, etc. The experiments are carried out for a multi-recess type journal bearing with capillary restrictor. The Finite Element Method(FEM) is used for the analyses. The predicted load capacity under the condition of stationary or eccentric ratio of bellow 0.2 of the spindle shows excellent agreement with the measured. But, with an increase of the eccentric ratio when the spindle is rotating, the predicted load capacity is largely estimated than the measured. It seems that the difference is mainly caused among others from the fact that the effect of oil-viscosity variation due to the temperature change in the bearing is not introduced into the analyses. The analysis method proposed to estimate the static characteristics of hydrostatic journal bearing is considered to be very reliable since the predicted results are overall in good agreement with the measured.

  • PDF

A Study on Lubrication Characteristic of Slipper Hydrostatic Bearing in Hydraulic Piston Pump (유압 피스톤 펌프의 슬리퍼 정압베어링에 관한 윤활특성 연구)

  • Jung, J.Y.;Cho, I.S.;Baek, I.H.;Song, K.K.;Oh, S.H.;Jung, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • The leakage generated from the clearance between the cylinder bore and the piston is one of the most serious problems in the hydraulic piston pump, and it even results in terrible decrease of the volume efficiency at a great velocity and high pressure. In this paper, the lubrication characteristic of the hydrostatic slipper bearing equipped in the hydraulic piston pump has been worked out by experimentation with three model bearings of different shape. Preparatory to this, not only the three models of piston-slipper were designed, but the corresponding experimental apparatus were also manufactured. As a result, it was verified that, according to the supply pressure, the hydrostatic bearing part of the slipper is severely affected by the pocket pressure, land pressure, oil film thickness, and leakage flow.

  • PDF

An Ultra-precision Lathe for Large-area Micro-structured Roll Molds (대면적 미세패턴 롤 금형 가공용 초정밀 롤 선반 개발)

  • Oh, Jeong Seok;Song, Chang Kyu;Hwang, Jooho;Shim, Jong Youp;Park, Chun Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1303-1312
    • /
    • 2013
  • We report an ultra-precision lathe designed to machine micron-scale features on a large-area roll mold. The lathe can machine rolls up to 600 mm in diameter and 2,500 mm in length. All axes use hydrostatic oil bearings to exploit the high-precision, stiffness, and damping characteristics. The headstock spindle and rotary tooling table are driven by frameless direct drive motors, while coreless linear motors are used for the two linear axes. Finite element method modeling reveals that the effects of structural deformation on the machining accuracy are less than $1{\mu}m$. The results of thermal testing show that the maximum temperature rise at the spindle outer surface is approximately $0.5^{\circ}C$. Finally, performance evaluations of the error motion, micro-positioning capability, and fine-pitch machining demonstrate that the lathe is capable of producing optical-quality surfaces with micron-scale patterns with feature sizes as small as $20{\mu}m$ on a large-area roll mold.