• Title/Summary/Keyword: Hydropower

Search Result 432, Processing Time 0.026 seconds

Case study of the mining-induced stress and fracture network evolution in longwall top coal caving

  • Li, Cong;Xie, Jing;He, Zhiqiang;Deng, Guangdi;Yang, Bengao;Yang, Mingqing
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.133-142
    • /
    • 2020
  • The evolution of the mining-induced fracture network formed during longwall top coal caving (LTCC) has a great influence on the gas drainage, roof control, top coal recovery ratio and engineering safety of aquifers. To reveal the evolution of the mining-induced stress and fracture network formed during LTCC, the fracture network in front of the working face was observed by borehole video experiments. A discrete element model was established by the universal discrete element code (UDEC) to explore the local stress distribution. The regression relationship between the fractal dimension of the fracture network and mining stress was established. The results revealed the following: (1) The mining disturbance had the most severe impact on the borehole depth range between approximately 10 m and 25 m. (2) The distribution of fractures was related to the lithology and its integrity. The coal seam was mainly microfractures, which formed a complex fracture network. The hard rock stratum was mainly included longitudinal cracks and separated fissures. (3) Through a numerical simulation, the stress distribution in front of the mining face and the development of the fracturing of the overlying rock were obtained. There was a quadratic relationship between the fractal dimension of the fractures and the mining stress. The results obtained herein will provide a reference for engineering projects under similar geological conditions.

Sediment monitoring for hydro-abrasive erosion: A field study from Himalayas, India

  • Rai, Anant Kr.;Kumar, Arun
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.146-153
    • /
    • 2017
  • Sediment flow through hydropower components causes hydro-abrasive erosion resulting in loss of efficiency, interruptions in power production and downtime for repair/maintenance. Online instruments are required to measure/capture the variations in sediment parameters along with collecting samples manually to analyse in laboratory for verification. In this paper, various sediment parameters viz. size, concentration (TSS), shape and mineral composition relevant to hydro-abrasive erosion were measured and discussed with respect to a hydropower plant in Himalayan region, India. A multi-frequency acoustic instrument was installed at a desilting chamber to continuously monitor particle size distribution (PSD) and TSS entering the turbine during 27 May to 6 August 2015. The sediment parameters viz. TSS, size distribution, mineral composition and shape entering the turbine were also measured and analysed, using manual samples collected twice daily from hydropower plant, in laboratory with instruments based on laser diffraction, dynamic digital image processing, gravimetric method, conductivity, scanning electron microscope, X-ray diffraction and turbidity. The acoustic instrument was able to capture the variation in TSS; however, significant deviations were found between measured mean sediment sizes compared to values found in the laboratory. A good relation was found for turbidity ($R^2=0.86$) and laser diffraction ($R^2=0.93$) with TSS, which indicated that turbidimeter and laser diffraction instrument can be used for continuous monitoring of TSS at the plant. Total sediment load passed through penstock during study period was estimated to be 15,500 ton. This study shall be useful for researchers and hydropower managers in measuring/monitoring sediment for hydro-abrasive erosion study in hydropower plants.

Assessment of the crest cracks of the Pubugou rockfill dam based on parameters back analysis

  • Zhou, Wei;Li, Shao-Lin;Ma, Gang;Chang, Xiao-Lin;Cheng, Yong-Gang;Ma, Xing
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.571-585
    • /
    • 2016
  • The crest of the Pubugou central core rockfill dam (CCRD) cracked in the first and second impounding periods. To evaluate the safety of the Pubugou CCRD, an inversion analysis of the constitutive model parameters for rockfill materials is performed based on the in situ deformation monitoring data. The aim of this work is to truly reflect the deformation state of the Pubugou CCRD and determine the causes of the dam crest cracks. A novel real-coded genetic algorithm based upon the differences in gene fragments (DGFX) is proposed. It is used in combination with the radial based function neural network (RBFNN) to perform the parameters back analysis. The simulated settlements show good agreements with the monitoring data, illustrating that the back analysis is reasonable and accurate. Furthermore, the deformation gradient of the dam crest has been analysed. The dam crest has a great possibility of cracking due to the uncoordinated deformation, which agrees well with the field investigation. The deformation gradient decreases to the value lower than the critical one and reaches a stable state after the second full reservoir.

The Analysis of Hydropower Development and the Mekong Power Grid on Regional Cooperation : Focus on the Greater Mekong Subregion Program

  • Nayeon Shin;Seungho Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.245-245
    • /
    • 2023
  • This paper examines the extent to which the Mekong River Basin countries have achieved socioeconomic benefits based on regional cooperation through the Greater Mekong Subregion (GMS) Program, focusing on hydropower development and the Mekong Power Grid. This study pays attention to the time period from 2012 to 2022. The benefit sharing approach is employed to evaluate the extent to which hydropower development and the Mekong Power Grid have contributed to the regional energy trade in the GMS program. The GMS program was launched by the Asian Development Bank (ADB) in 1992, and the Chinese provinces of Yunnan and Guangxi, Myanmar, Lao PDR, Thailand, Cambodia, and Vietnam have taken an active part in the program. The goals of the GMS program are to achieve poverty alleviation, economic development, and regional cooperation in various sectors, including energy, tourism, and transportation. The GMS Economic Cooperation Program Strategic Framework 2030 (GMS-2030), in 2021, provides a new framework for prosperous and sustainable development in the river basin. In the energy sector, the GMS program has been instrumental in facilitating hydropower development and creating the Mekong Power Grid with the Regional Grid Code (RGC), contributing to economic benefits and promoting regional trade of hydroelectricity. It is argued that the GMS program has enhanced regional cooperation between the riparian countries. Despite such achievements, the GMS program has faced challenges, including the gap of economic development between the riparian countries, socioeconomic and environmental concerns regarding hydropower development between the Upper and Lower Mekong countries, and geopolitical tensions from the US-China rivalry. These challenges should adequately be addressed within the program, which can guarantee the sustainability of the program for the river basin.

  • PDF

Location Analysis for Developing Small Hydropower Using Geo-Spatial Information System (지형공간정보체계를 활용한 소수력 개발의 입지분석)

  • Yi, Choong-Sung;Kim, Kil-Ho;Lee, Jin-Hee;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.12
    • /
    • pp.985-994
    • /
    • 2007
  • Small hydropower is the one of the cleanest one among new and renewable energy with less green house gas emissions. Recently, the necessity of developing small hydropower is emerging since its remaining potential resources in this country are abundant. However, a survey or research on the small hydropower development has been hardly performed since the 1990#s. These circumstances encourages a systematic approach for the small hydropower development. The purpose of this study is to propose a methodology of the location analysis for developing small hydropower. To this end, constraint and location criteria with weights are established and quantification method of each factor is presented. Especially, the analysis procedure is established on the basis of GSIS. Also the study focus on raising the objectivity and precision of analysis by developing system model with automatic search. The proposed methodology is applied to Bochung stream in Keum Riverbasin. The result selects the four and two locations of dam type and run-of-river type respectively. This study will be beneficial to the future activation of small hydropower development as a fundamental work.