• Title/Summary/Keyword: Hydroponic Solution

Search Result 186, Processing Time 0.032 seconds

Effects of Compost Leachate and Concentrated Slurry on the Growth and Yield of Pepper in a Substrate Hydroponic Culture (퇴비단 여과액비와 막분리 농축액비를 이용한 고형배지경 양액재배가 고추의 생육과 수량에 미치는 영향)

  • Ryoo, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.15 no.2
    • /
    • pp.161-170
    • /
    • 2009
  • This experiment was conducted to investigate the effects of compost leachate and concentrated pig slurry on growth of pepper in substrate hyrdoponic culture. In process of composting, compost leachate was was through a saturated compost heap. Pig slurry was filtered by ultra filtration and concentrated by reverse osmosis process. The pig slurry was mixed with chemical nutrient solution and byproduct based on nitrogen content. Peppers were grown in the seven different hydroponic solutions; compost leachate (CL), concentrated pig slurry (CS), compost leachate + byproduct (CL+BP), concentrated pig slurry + byproduct (CS+BP), compost leachate 50% + nutrient solution 50% (CL+NS), concentrated pig slurry 50% + nutrient solution 50% (CS+NS) and chemical nutrient solution for pepper. The chemical nutrient solution was the standard solution of National Horticulture Research Station for the growth of pepper. The concentration of nutrient solution was adjusted $1.6{\sim}2.0mS/cm$ in EC. The compost leachate and concentrated pig slurry were low in phosphorus (P), calcium (Ca), magnesium (Mg), but rich in potassium (K). Growth characteristics as affected by the different nutrient solution were significantly different. Growth and fruit characteristics treated with CL 50+NS 50%CS and 50+NS 50% were similar with NS 100% control plot. The dry weight of stem and leaf were 107.4, 104.2g in plot of NS 100% and CS 50%+NS 50%, respectively. The fruit of pepper showed lowest in the plot treated with 100% concentrated pig slurry, and the growth of pepper severely decreased after application of 100% CS treatment. The yield of pepper was not significantly different between the plots treated with mixture of CS50 + NS50% and 100% nutrient solution treatment. Fruit yield of the compost leachate concentrated pig slurry plot were 59, 14% compared to control, repectively. In conclusion, the mixture solution of 50% of pig slurry and 50% of nutrient solution could be used as a nutrition solution of pepper in hydroponic culture.

  • PDF

Determination of Inorganic Phosphate in Paprika Hydroponic Solution using a Laboratory-made Automated Test Stand with Cobalt-based Electrodes (코발트전극과 자동시험장치를 이용한 파프리카 양액 내 무기인산 측정)

  • Kim, Hak-Jin;Son, Dong-Wook;Kwon, Soon-Goo;Roh, Mi-Young;Kang, Chang-Ik;Jung, Ho-Seop
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.326-333
    • /
    • 2011
  • The need for rapid on-site monitoring of hydroponic macronutrients has led to the use of ion-selective electrodes, because of their advantages over spectrophotometric methods, including simple methodology, direct measurement of analyte, sensitivity over a wide concentration range, and low cost. Stability and repeatability of response can be a concern when using multiple ion-selective electrodes to measure concentrations in a series of samples because accuracy might be limited by drifts in electrode potential. A computer-based measurement system could improve accuracy and precision because of both consistent control of sample preparation and easy calibration of sensors. Our goal was to investigate the applicability of a cobalt-based electrode used in conjunction with a laboratory-made automated test stand for quantitative determination of ${PO_4}^-$ in hydroponic solution. Six hydroponic solutions were prepared by diluting highly concentrated paprika hydroponicsolution to provide a concentration range of 1 to 300 ppm $PO_4$-P. A calibration curve relating electrode response to phosphate in paprika hydroponic solution titrated to pH 4 with 0.025M KHP was developed based on the Nikolskii-Eisenman equation with a coefficient of determination ($R^2$) of 0.94. The laboratory-made test stand consisting of three cobalt-based electrodes measured phosphate concentrations similar to those obtained with standard laboratory methods (a regression slope of 0.98 with $R^2$ = 0.80). However, the y intercept was relatively high, 30 ppm, probably due to the relatively large amount of variation present among multiple measurements of the same sample. Further studies on the high variation in EMFs obtained with cobalt electrodes during replicate measurements were required for P estimations comparable to those obtained with standard laboratory instruments.

Smart Water Quality Sensor Platform For Hydroponic Plant Growing Applications

  • Nagavalli, Venkata Raja Satya Teja;Lee, Seung-Jun;Lee, Kye-Shin
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.215-220
    • /
    • 2018
  • This work presents a smart water quality sensor for hydroponic plant growing applications. The proposed sensor can effectively measure pH level and electrical conductivity of the water solution. The micro-controller incorporated in the sensor processes the raw sensor data, and converts it into a readable format. In addition, through the mobile interface realized using a WiFi module, the sensor can send data to the web server database that collects and stores the data. The data stored in the web server can be accessed by a personal computer or smart phone. The prototype sensor has been implemented, and the operations have been verified under an actual hydroponic plant growing application.

Inactivation of Wilt Pathogen(Fusarium oxysporum f. sp.) using Plasma in Tomato Hydroponic Cultivation (토마토 수경재배에서 플라즈마를 이용한 시들음병균(Fusarium oxysporum f. sp.) 불활성화)

  • Dong-Seog Kim;Young-Seek Park
    • Journal of Environmental Science International
    • /
    • v.33 no.5
    • /
    • pp.323-332
    • /
    • 2024
  • Circulating hydroponic cultivation has the advantage of reducing soil and water pollution problems caused by discharge of fertilizer components because the nutrient solution is reused. However, cyclic hydroponic cultivation has a low biological buffering capacity and can cause outbreaks of infectious root pathogens. Therefore, it is necessary to develop technologies or disinfection systems to control them. This study used dielectric barrier discharge plasma, which generates various persistent oxidants, to treat Fusarium oxysporum f. sp., a pathogen that causes wilt disease. Batch and intermittent continuous inactivation experiments were conducted, and the results showed that the total residual oxidant was persistent in intermittent plasma treatment at intervals of 2-3 days, and F. oxysporum was treated efficiently. Intermittent plasma treatment did not inhibit the growth of tomatoes.

A Fundamental Study on the Nutrient Solution Cooling System Utilizing Ground Water (지하수를 이용한 양액냉각시스템 개발에 관한 기초연구)

  • 남상운;손정익;김문기
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • Experimental and theoretical analyses were carried out to investigate the heat exchange characteristics of the nutrient solution cooling system utilizing ground water. The material of heat exchanger used in the experiment was polyethylene and the cross-flow type was adapted in which nutrient solution was mixed and ground water unmixed. For the exchanger surface area of 0.33$m^2$ and flow rates of ground water of 1-6$\ell$/min, NTU(number of transfer units) and effectiveness of experimental heat exchanger were 0.1-0.45 and 10-35%, respectively. Therefore these results showed that the hydroponic greenhouse of 1,000$m^2$(300 pyong) with the ground water of 10$m^2$/day could cover about 55-70% of maximum cooling load in summer.

  • PDF

Changes in inorganic element concentrations in leaves and nutrient solution of supplied and drained during retarding cultivation of Lycopersicum esculentum var. 'Dafnis' and 'TY Tiny'

  • Eun Mo, Lee;Bong Chun, Lee;Hee Chul, Lee;Yeo Uk, Yun;Sang Kyu, Park;Soo Bok, Park;Sun Ok, Chung;In Sook, Park;Jong Myoung, Choi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.629-641
    • /
    • 2022
  • This research was conducted to secure fundamental data for development of a recirculating hydroponic system. To achieve this, Lycopersicum esculentum var. 'Dafnis' and 'TY Tiny' were grown with Yamazaki hydroponic solution and the inorganic element concentrations of plant leaves and nutrient solution of supplied and drained were analyzed periodically. The T-N and P contents in both varieties of tomato leaves showed gradual decreasing tendencies with the passage of time. The 'TY Tiny' tomato had higher contents of those two nutrients than 'Dafnis' tomato in the late stage. The K content of 'Dafnis' tomato was high in the early growth stage, but low in the late stage. However, that of 'TY Tiny' tomatoes rose in the late stage. The Ca content gradually increased in both varieties of tomato in the latter stages. The EC of the drained nutrient solution in both varieties of tomato showed increasing tendencies as time had passed, but the pH was get lowered in the drained solution. The concentrations of NO3-N, K, Ca, Mg, Na, Fe, and B, except PO4-P in the drained nutrient solution were generally higher than those in the supplied solution, especially in the period of October through December. The above results can be used for controlling of nutrient concentrations in the recirculated hydroponic cultivation of tomato.

Lead Induced Organic Acid Exudation and Citrate Enhanced Pb Uptake in Hydroponic System

  • Kim, Kwon-Rae;Owens, Gary;Naidu, Ravi;Kwon, Soon-Ik;Kim, Kye-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.146-157
    • /
    • 2009
  • The influence of Pb-citrate complex formation on Pb uptake and the effect of Pb on organic acid exudation were investigated using four plant species, viz., sunflower (Helianthus annuus L), Indian mustard (Brassica juncea), canola (Brassica napus) and vetiver grass (Vetiveria zizanioides) under hydroponic conditions. Seedlings were exposed to different levels of Pb and Pb-citrate for 24 hrs and subsequently Pb distributions in plant shoot, root and hydroponic solution were measured. The dissolved organic carbon (DOC) concentration generally decreased as the concentration of Pb in the hydroponic solution increased. In contrast to DOC, the total organic acid concentrations exuded from Indian mustard roots significantly increased (424 to 6656 mg $kg^{-1}$) with increased Pb treatment, implying that exuding organic acids were involved in Pb accumulation in Indian mustard. The complexation of Pb with citrate enhanced Pb accumulation in the above ground portions. Lead concentration in Indian mustard increased from 2.05 mg $kg^{-1}$ to 6.42 mg $kg^{-1}$ when the concentration of citrate in solution increased from 0 to 50 mg $L^{-1}$. This result showed enhanced translocation of Pb from root to shoot with observation of transfer coefficient ($K_t$) increase from 2.03E-3 to 5.72E-3.

Study on the Lettuce Growth Using Different Water Sources in a Hydroponic System (수경재배용 용수 종류에 따른 상추 생장 연구)

  • Heo, Jeong Min;Kim, Ga Eun;Kim, Jin Hwang;Choi, Byeongwook;Lee, Sungjong;Lee, Byungsun;Jho, Eun Hea
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.3
    • /
    • pp.191-198
    • /
    • 2022
  • BACKGROUND: Plants can be grown using a culture medium without soil using a hydroponic system. Crop production by the hydroponic system is likely to increase as a means of solving various problems in the agricultural sector such as aging of rural population and climate change. Different water sources can be used to prepare the culture medium used in the hydroponic system. Therefore, it is necessary to study the effect of different water sources on crop production by the hydroponic system in order to explore the applicability of various water resources. METHODS AND RESULTS: Lettuce was cultivated by the hydroponic system and three different water sources [tap water (TW), bottled water (BW), and groundwater (GW)] were used to compare the effect of water sources on lettuce growth. The three kinds of waters with a nutrient solution (TW-M, BW-M, GW-M) were also used as the media. After the six-week growth period, the lettuce length and weight, the number of leaves, and the contents of chlorophylls and polyphenols were compared among the different media used. The lettuces did not grow in the waters without the nutrient solution. In the media, the lettuce growth and the contents of chlorophylls were affected by the different water sources used to prepare the media, while the contents of polyphenols were not affected. The absorbed amounts of ions by lettuces, especially Ca and Zn ions, and the dry weight of the harvested lettuces showed a strong positive correlation. CONCLUSION(S): Overall, this study shows that different water sources used for growing lettuce in a hydroponic system can affect lettuce growth. Further studies on the enhancement of crop qualities using different water sources may be required in future studies.

Effects of Nutrient Solutions and Their Supplying Frequency on Seedling Growth and Utilization of Minerals in Hydroponic Rice Seedling Raising (벼 수경육묘에서 양액의 종류와 공급시기에 따른 묘 생육과 무기성분의 이용)

  • 김영광;홍광표;정완규;손길만;송근우;강진호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.3
    • /
    • pp.205-208
    • /
    • 2003
  • This study was conducted to develop a technology for raising rice hydroponically seedlings using the bed in which the seedlings grew in nutrient solution without soil. In Hydroponic rice seedlings, two nutrient solutions (Yashida and Wonsi) were evaluated with four supplying methods $[$3 times (2 days, 8 days and 12 days after seeding), 2 times (5 days and 10 days after seeding), and 1 time (5 days and 10 days after seeding)$]$1, Seedling growth was not different between the two solutions. However, tensile strength of root-mat was higher in Yoshida solution than in Wonsi solution. The more frequent supply of solution resulted in the better seedling growth but in the weaker root mat. Utilization efficiency of the solution minerals was not different in N content regardless of supplying frequencies, but higher in r, K, Ca and Mg when supplied only once on the 5 days after seeding.

Effects of Nutrient Solution Strength on Growth and Nutrient Element Concentrations of Leaf Lettuce by Hydroponic Culture under Artificial Light (인공광을 이용한 수경재배에서 배양액 농도가 상추의 생장과 배양액 양분 농도에 미치는 영향)

  • Kim, D.E.;Lee, W.Y.;Heo, J.W.;Lee, G.I.;Kang, D.H.;Woo, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.19 no.1
    • /
    • pp.5-14
    • /
    • 2017
  • This study was conducted to investigate the effects of nutrient solution strength on growth and nutrient element concentrations in leaf lettuce (Lactuca sativa L. cv. 'Dduksum') by hydroponic culture under fluorescent lamp and LED. Leaf lettuce were grown in closed hydroponic cultivation systems supplied with 1/2, 1 and 2 strength of nutrient solution recommended by horticultural experiment station in Japan. The growth of 'Dduksum' was highest in the 2 strength of standard nutrient solution. The amount of nutrient element in the recycled nutrient solution was higher at 2, 1 and 1/2 strength of nutrient solution. The concentration of NO3-N, Ca2+, Mg2+ in the recycled nutrient solutions increased in 1 and 2 strength of nutrient solution but that of NH4-N decreased gradually in 1/2 and 1 strength of nutrient solution. The concentration of K, Ca, Mg in leaf lettuce was maintained in the normal range, whereas the concentration of phosphorous was 1.3 to 1.6%, which was higher than proper range. As the concentration of NH4-N decreases gradually in all the treatments, it is necessary to raise the rate of NH4-N or add it.