• 제목/요약/키워드: Hydropneumatic modeling

검색결과 4건 처리시간 0.019초

STUDY ON RIDE QUALITY OF A HEAVY-DUTY OFF-ROAD VEHICLE WITH A NONLINEAR HYDROPNEUMATIC SPRING

  • SUN T.;YU F.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.483-489
    • /
    • 2005
  • Based on a two-degree of freedom vehicle model, this paper investigates ride comfort for a heavy off-road vehicle mounted a nonlinear hydropneumatic spring, which is influenced by nonlinear stiffness and damping characteristics of the hydropneumatic spring. Especially, the damping force is derived by applying H. Blasius formula in modeling process according to the real physical structure of the hydropneumatic spring, and the established model of nonlinear stiffness characteristics have been validated by experiments. Furthermore, the effects of parameter variations of the hydropneumatic spring, such as initial charge pressure and damping coefficient, on body acceleration, suspension deflection and dynamic tire deflection are also investigated.

대형 트럭 반능동형 캐빈 공기 현가시스템의 유공압 모델링 및 동특성 해석 (Hydropneumatic Modeling and Dynamic Characteristic Analysis of a Heavy Truck Semi-active Cabin Air Suspension System)

  • 이광헌;정헌술
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.57-65
    • /
    • 2011
  • In this paper, a hydropneumatic modeling and dynamic analysis of a heavy truck semi-active cabin air suspension system is presented. Semi-active cabin air suspension system improves driver's ride comfort by controlling the damping characteristics in accordance with driving situation. So it can reduce vibration between truck frame and cabin. Semi-active cabin air suspension system is consist of air spring, leveling valve and CDC shock absorber, and full cabin system are mathematically modelled using AMESim software. Simulation results of components and full cabin system are compared with experimental data of components and test results of a cabin using 6 axis simulation table. It is found that the simulation results are in good agreements with test results, and the hydropneumatic model can be used well to predict dynamic characterics of heavy truck semi-active cabin air suspension system.

대형 트럭 캐빈 공기 현가장치의 유공압 모델링 및 해석 (Hydropneumatic Modeling and Analysis of a Heavy Truck Cabin Air Suspension System)

  • 신행우;최규재;이광헌;고한영;조길준
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.128-134
    • /
    • 2008
  • In this paper, a hydropneumatic modeling and analysis of a heavy truck cabin air suspension system is presented. Cabin air suspension system is a system which improves ride comfort of a heavy truck and it can reduce vibration between truck frame and cabin. The components of the system, air spring, shock absorber, leveling valve and full cabin system are mathematically modelled using AMESim software. Simulation results of components and full cabin system are compared with experimental data of components and test results of a cabin using 6 axis simulation table. It is found that the simulation results are in good agreements with test results, and the hydropneumatic model can be used well to predict dynamic characteric of heavy truck cabin air suspension system.

회전 차축 및 유기압 현가장치를 장착한 대용량 세미 트레일러의 주행 동특성 해석 (Analysis for the Driving Dynamic Characteristics of Large Scale Semi-Trailer Equipped with Swivel Axle and Hydropneumatic Suspension Unit)

  • 하태완;박정수
    • 한국군사과학기술학회지
    • /
    • 제25권2호
    • /
    • pp.196-209
    • /
    • 2022
  • Driving dynamic characteristics of semi-trailer loaded with precise equipments are very important to protect them from vibration, impact or other disturbances. In this paper, in order to identify the driving dynamic characteristics of the large scale semi-trailer equipped with swivel axle and hydropneumatic suspension unit, Dynamics Modeling & Simulation(M&S) were performed using general Dynamics Analysis Program(RecurDyn V9R2). The semi-trailer was modeled as two types - one is Multi Rigid Body Dynamics(MRBD) model, and the other Rigid-Flexible Body Dynamics(RFlex) one. The natural vibration mode and frequencies of semi-trailer body, acceleration of dummy-weight, pitch, roll and yaw of dummy-weight, swivel axle and hydropneumatic suspension cylinder support structure, and acting force of hydropneumatic suspensions etc. were obtained from the M&S. Additionally frequency analysis were performed using the data of behavior obtained from above M&S. Generally the quantitative results of RFlex are larger than them of MRBD in view of magnitude of the comparable parametric values.