• Title/Summary/Keyword: Hydrophobicity

Search Result 763, Processing Time 0.027 seconds

Factors Affecting Z-direction Penetration of PVAm Solution into Paper (PVAm 용액의 종이 두께 방향 침투에 영향하는 인자들)

  • Choi, Do-Chim;Won, Jong Myoung;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.104-111
    • /
    • 2015
  • Factors influencing penetration of PVAm solution into paper during impregnation were investigated with ultrasonic Penetration Evenness Analyzer (PEA). Paper structure was varied by changing basis weight, freeness of pulp, calendering, and filler addition, and hydrophobicity of paper was varied by adding AKD. In addition, the viscosity of PVAm solution was varied by changing the concentration of PVAm solution. Important factors influencing penetration of PVAm solution into paper were found to be the pore structure and the hydrophobicity of paper, and the viscosity of PVAm solution. Pore structure of paper could be controlled by refining degree and filler addition and hydrophobicity of paper could be controlled by internal sizing. Denser structure of paper, higher hydrophobicity and higher liquid viscosity slowed down the penetration of PVAm solution into paper.

Surface aging and hydrophobicity recovery of silicone rubber by salt fog method (Salt fog 시험법에 의한 실리콘 고무의 표면 열화 및 발수성 회복 특성)

  • 김정호;서광석;문중섭;송우창;이재형;박용관;양계준;유영식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.636-641
    • /
    • 2000
  • The purpose of this study is assessing the characteristics of surface aging and recovery of hydrophobicity for silicone rubber which takes a great interest as outdoor insulation recently subjected to the combined stressed of salt fog and AC power. The methods for assessing are contact angle ATR-FRIR, AFM and XRD. In addition salt fog method is adopted as the artificial contamination experiment and AC power is applied 24 hour on and 24 hour off repeatedly for 5 cycles. The results suggest that degraded surface was more rough than virgin but was restored water repellency through the off cycle. It was due to not only the formation of fractal surface but also maintenance of hydrophobic surface by diffusion of low molecular oil. Although surface recovers initial hydropohbicity there are possibilities of decreasing electrical performance due to irreversable changes such as depolymerization of surface and loss of filler particles. This fact is confirmed by surface conductivity measurement showing that the degradation is significant and the recovery of hydrophobicity is imperfect as the energized cycle increases.

  • PDF

Hydrophobic Characteristics of a Silicone Resin Surface Produced by Replicating an Electric Discharge Machined Surface (방전가공면을 복제한 실리콘수지 표면의 발수특성연구)

  • Kim, Y.H.;Hong, S.K.;Lee, S.Y.;Lee, S.H.;Kim, K.H.;Kang, J.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • In this study, a micro/nano-random-pattern-structure surface was machined by electric discharge machining (EDM) followed by replicating the EDM surface with a silicone elastomer having low energy and greater hydrophobicity. The variation of hydrophobicity was of prime interest and was examined as a function of the surface roughness of the replicated silicone elastomer. The hydrophobicity was evaluated by the water contact angle (WCA) measured on the relevant surface. For the experiments, the original surfaces were machined by die sinking electric discharge machining (DS-EDM) and wire cutting electric discharge machining (WC-EDM). The ranges of surface roughness were Ra $0.8{\sim}19{\mu}m$ for the DS-EDM and Ra $0.5{\sim}4.7{\mu}m$ for the WC-EDM. In order to fabricate a hydrophobic surface, the EDM surfaces were directly replicated using a liquid-state silicone elastomer, which was thermally cured. The measured WCA on the replicated surfaces for DS-EDM was in the range of $115{\sim}130^{\circ}$ and for WC-EDM the WCA was in the range of $123{\sim}150^{\circ}$. Additionally, the dynamic hydrophobicity was evaluated by measuring an advancing and a receding WCA on the replicated silicone elastomer surfaces.

Prediction of Retention Behavior of Alkyl Benzenes by Hydrophobicity Parameters in Reversed-Phase Column (소수성 파라메터를 적용한 알킬벤젠류의 역상컬럼내의 용출거동 예측)

  • Lee, Chang-Young;Park, Myung-Yong;Lee, Yong-Moon
    • YAKHAK HOEJI
    • /
    • v.53 no.5
    • /
    • pp.281-285
    • /
    • 2009
  • The retention of solutes in reversed-phase high-performance liquid chromatography depends on their hydrophobicity. Although the retention behaviors of alkyl benzenes have been reported so far, quite a few authors have mentioned the retention behavior of alkyl benzenes with plural hydrophobicity parameters. In this sense, we were interested in the retention behaviors of alkyl benzenes having benzene moiety and increasing alkyl chain. In this study, we therefore investigated the retention behavior of alkyl benzenes in reversed-phase high-performance liquid chromatography in order to obtain information concerning the effects of the aromatic moiety and the carbon chain on the retention mechanism by comparing their capacity factor (k') in relation to the carbon chain length. The eluent acetonitrile ($CH_3CN$) showed high selectivity on alkyl benzenes, showing the high difference of capacity factor (${\Delta}log\;k'$) between toluene and octyl benzene. Indeed, the ${\Delta}log\;k'$ of 80% $CH_3CN$ represented 1.42- and 4.25-times longer than 90% MeOH and 60% THF, respectively. The hydrophobicity parameters, van der Waals volume, bond constant, partition constant, $\pi$-energy effect and enthalpy were evaluated with the capacity factor (k') of alkyl benzenes eluted on 80% CH3CN, 90% MeOH and 60% THF, respectively. The best eluent for predicting retention behavior of alkyl benzenes was 90% MeOH ($R^2$ 0.999). The three parameters, van der Waals volume, bond constant and partition constant were well coincident to log k' by increasing alkyl benzenes. However, $\pi$-energy effect and enthalpy were severely disagreeable. Taken together, van der Waals volume, bond constant and partition constant were a reliable parameters to predict the retention behaviors of alkyl benzenes on reversed-phase column.

Effects of Amino Acid Composition and Average Hydrophobicity of Soybean Peptides on the Concentration of Serum Cholesterol in Rats (대두 펩타이드의 아미노산 조성 및 평균소수도가 흰쥐의 혈청 콜레스레롤 농도에 미치는 영향)

  • Han, Eung-Soo;Lee, Hyong-Joo;Shon, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.552-557
    • /
    • 1993
  • Effects of amino acid composition and average hydrophobicity of soybean peptides on serum cholesterol in rats were investigated. Soybean protein(ISP), casein(SCN), their peptic hydrolyzates fractionated by acid precipitations(SHT, SH8, SH6, SH4, CHT), and amino acid mixtures of the same composition as the proteins(SAA, CAA) were prepared to feed to rats. The amino acid composition of the peptides was analyzed by HPLC and the concentration of serum cholesterol in the rats was measured. By data analysis, it was found that there was no relationship between ratio of Lys/Arg or molar ratio of hydrophobic amino acids and serum cholesterol level. And also there was no relationship between the concentration and average hydrophobicity calculated by the method of Tanford, Manavalan, for Meirovitch, only except by the method of Krigbaum(r=-0.736); the higher the average hydrophobicity of Krigbaum was, the lower the concentration of serum cholestrol became.

  • PDF

A Study on the Super-hydrophobicity of Poly(ethylene terephthalate) Fabric by TiO2 Nano-particles Coating (TiO2 나노입자 코팅에 의한 PET섬유의 초발수성에 관한 연구)

  • Park, Sung-Min;Kwon, Il-Jun;Kim, Ji-Yeon;Kim, Chang-Nam;Yeum, Jeong-Hyun;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.30-37
    • /
    • 2009
  • Studies on plants such as lotus leaf suggested that dual-scale structure could contribute to super-hydrophobicity. We introduced super-hydrophobicity onto poly(ethylene terephthalate)(PET) fabric with dual-scale structure by assembling $TiO_2$ nano sol. PET fabric was treated with $TiO_2$ sol, water-repellent agent using various parameters such as particle size, concentration. Morphological changes by particle size were observed using field emmission scanning electron microscopy(FE-SEM) and AFM measurement, contact angle measurement equipment. The contact angle of water was about 138.5$^{\circ}$, 125.8$^{\circ}$, 125.5$^{\circ}$ and 108.9$^{\circ}$ for PET fabric coated with 60.2nm, 120.1nm, 200nm and 410.5nm $TiO_2$ particles, compared with about 111.5$^{\circ}$ for PET fabric coated with water repellent. When we mixed particle sizes of 60.2nm and 120.1nm by 7:3 volume ratio, the contact angle of water was about 132.5$^{\circ}$. And we mixed particle sizes of 60.2nm and 200nm by 7:3 volume ratio, the contact angle of water was about 141.8$^{\circ}$. Also we mixed particle sizes of 60.2nm and 410.5nm by 7:3 volume ratio, the best super-hydrophobicity was obtained. In this paper, we fabricated various surface structures to the water-repellent surfaces by using four types of $TiO_2$ nano-particles, and we found that the nanoscale structure was very important for the super-hydrophobicity.

Effect of chitosan-oligosaccharides on hydrophobicity of pathogenic Escherichia coli (Chitosan-oligosaccharides가 병원성 대장균의 소수성(疎水性)에 미치는 영향)

  • Choi, Hyun-sung;Han, Ho-jae;Kim, Hee-kyung;Kim, Hee-sun;Kang, Mun-il
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.554-559
    • /
    • 1999
  • The purpose of this study was to evaluate effect of chitosan-oligosaccharides (CHIOL) on hydrophobicity of pathogenic E coli including a field isolate from suckling piglet with diarrhea, E coli-O157 : H7, and E coli-O149 : K88ac. E coli field isolate appeared adhesion of 100% to n-hexadecane between 0.00125% and 0.05% CHIOL. E coli-O157 : H7 occurred adhesion of 69% and 64% under the level of 0.00125% and 0.025% CHIOL, respectively. E coli-O149 : K88ac showed adhesion of 100% in higher than 0.025% CHIOL. For cationic action, the adhesion of E coli isolate and E coli-O149 : K88ac to n-hexadecane were inhibited at level of higher than 10mM $Ca^{2+}$ but did not induce any difference among the concentrations used(p < 0.01). However, the adhesion of E coli-O157 : H7 to n-hexadecane was inhibited at level of higher than 50mM $Ca^{2+}$. In a field trial, control piglets showed average mortality of up to 58% during 3 days after the onset of diarrhea. In contrast, the prevalence of E coli-induced diarrhea in CHIOL-treated groups without mortality was dropped down to average 34% on the 1st day after the treatment of CHIOL, and average 2% on the 4th day. After then, piglets with diarrhea was not present. In conclusion, the low concentrations of CHIOL were most likely to associate with the enhancement of hydrophobicity to pathogenic E coli. Calcium inhibited the hydrophobicity of E coli by CHIOL. These results suggested that CHIOL could be played an efficient and reliable role in treating enteric colibacillosis of piglets.

  • PDF

A Study of the Foaming Properties of Peanut Protein Isolate (분리 땅콩 단백질의 기포 특성에 관한 연구)

  • Park, Hyun-Kyung;Sohn, Kyung-Hee;Kim, Hyon-Jung
    • Korean journal of food and cookery science
    • /
    • v.6 no.3 s.12
    • /
    • pp.9-15
    • /
    • 1990
  • Peanut prptein isolate was tested for the purpose of finding out the effect of pH, Sodium Chloride concentration and heat treatment on the solubility, surface hydrophobicity, foam expansion and foam stability. The solubility of peanut protein isolate was affected by pH and showed the lowest value at pH 4.5. When the peanut protein isolate was heated, the solubility decreased at pH 3 and pH 7 but at pH 9 solubility increased. At all pH range, solubility decreased as NaCl was added. The surface hydrophobicity of peanut protein isolate showed the highest value at pH 1.5. Generally, at acidic pH range the surface hydrophobicity was high, but at alkaline region, the surface hydrophobicity increased as the temperature increased. And when NaCl was added, the surface hydrophobicity was also increased. Foam expansion of peanut protein isolate was no significant difference among the values about pH. When the peanut protein was heated and NaCl was added, foam expansion was increased at pH 7. Foam stability was significantly low at pH 4.5 and foam stability was increased at acidic pH region below pH 4.5. At pH 7 and pH 9, heat treatment above $60^{\circ}C$ increased foam stability. When NaCl was added, foam stability was significantly increased at pH 3 and pH 7.

  • PDF

Signal Sequence Prediction Based on Hydrophobicity and Substitution Matrix (소수성과 치환행렬에 기반한 신호서열 예측)

  • Chi, Sang-Mun
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.595-602
    • /
    • 2007
  • This paper proposes a method that discriminates signal peptide and predicts the cleavage site of the secretory proteins cleaved by the signal peptidase I. The preprocessing stage uses hydrophobicity scales of amino acids in order to predict the presence of signal sequence and the cleavage site. The preprocessing enhances the performance of the prediction method by eliminating the non-secretory proteins in the early stage of prediction. for the effective use of support vector machine for the signal sequence prediction, the biologically relevant distance between the amino acid sequences is defined by using the hydrophobicity and substitution matrix; the hydrophobicity can be used to Predict the location of amino acid in a cell and the substitution matrix represents the evolutionary relationships of amino acids. The proposed method showed 98.9% discrimination rates from signal sequences and 88% correct rate of the cleavage site prediction on Swiss-Prot release 50 protein database using the 5-fold-cross-validation. In the comparison tests, the proposed method has performed significantly better than other prediction methods.

Tracking and erosion resistance of polymer for outdoor high voltage insula (초고압 옥외 절연용 고분자 재료의 트래킹 열화특성)

  • Han, Dong-Hee;Park, Hoy-Yul;Kang, Dong-Pil;Kim, In-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1578-1580
    • /
    • 1999
  • Silicone rubber is being used for the housing material of outdoor high voltage insulators such as composite insulator, bushing, surge arrestor and cable terminator because of good tracking and erosion resistance, good hydrophobicity and recovery of hydrophobicity, and chemical stability. In this paper, tracking and erosion resistance of silicone rubber having fluids and different ATH contents were examined. Fluids were selected under the consideration of their molecular weight and chemical structure, expecting the high migration rate, the good pollutant encapsulation, and the long period with good hydrophobicity. Good tracking and erosion resistance and arc resistance have been achieved for the silicone rubber above ATH content 130 phr.

  • PDF