• Title/Summary/Keyword: Hydrophobic emulsion

Search Result 65, Processing Time 0.018 seconds

Ultrafiltration of Oily Wastewater with Surface Pretreated Membranes

  • Kim, Kyu-Jin;Fane, Antony G.
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.43-49
    • /
    • 1999
  • Separation of soluble oil was investigated during filtration of cutting oil emulsion using various commercial ultrafiltration membranes. The surface properties of membranes used were hydrophilic hydrophobic and modified surfaces by various surfactant pretreatments. Conditions varied include stirring speed transmeembrane pressure membrane type and surfactant type for pretreatment. The results give some indication of mechanisms occurring at the membrane surface. Surfactant pretreatments significantly improved water flux and UF flux of hydrophilic regenerated cellulose(up to 2.4x for YM100) and hydrophobic polysulfone (up to 2.2x for PTHK) membranes depending on surfactant type and operating conditions. The UF flux enhancement was attributed to membrane swelling and reduction of interfacial surface tension between oil droplets and membrane surface. unexpectedly the hydrophilic membranes revealed greater flux enhancement than the hydrophobic membranes. The results also showed a greater improvement in UF flux at lower operating pressure.

  • PDF

A Study on the Fundamental Mechanical Properties of Hydrophobic Cementeous Mortar using Silane Admixtures (실란계 혼화제를 활용한 소수성 시멘트 모르타르의 기초물성 연구)

  • Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.79-86
    • /
    • 2018
  • In this study, emulsion type hydrophobic admixture was prepared by mixing polyvinyl alcohol surfactant, polymethyl hydro-siloxane and meta kaolin, and the compressive strength and mechanical properties such as permeability and contact angle test of the mortar were evaluated. The developed hydrophobic admixture showed no decrease in strength and the mortar specimen with magnesium oxide developed the early strength. In the case of permeability, total seepage was significantly decreased when the hydrophobic admixture was directly mixed with the mortar, but the effect of meta kaolin contained in hydrophobic admixture was not significant. The surface of specimens coated with hydrophobic admixture shows that the contact angle on the surface was highly increased compared with reference mortar specimen. Further researches to obtain the optimum mix proportion of the PVA fiber, nano-silica and meta kaolin for producing the super-hydrophobic surface are required.

Silica Coating of Nanosized CoFe2O4 Particles by Micro-emulsion Method (마이크로에멀젼법을 이용한 나노 CoFe2O4 분말의 실리카 코팅)

  • Kim, Yoo-Jin;Yu, Ri;Park, Eun-Young;Pee, Jae-Hwan;Choi, Eui-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • We report the preparation of nanocrystalline cobalt ferrite, $CoFe_2O_4$ particles and their surface coating with silica layers using micro emulsion method. The cobalt ferrite nanoparticles with the size 7nm are firstly prepared by thermal decomposition method. Hydrophobic nanoparticles were coated with silica using micro-emulsion method with surfactant, $NH_4OH$, and tetraethylorthosilicate (TEOS). Monodispersed and spherical silica coated cobalt ferrite nanoparticles have average particle diameter of 38 nm and narrow sized distribution.

Cosmetic Emulsions: Stabilization by Particles (화장품 에멀젼: 입자에 의한 안정화)

  • Cho, Wan-Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • The preparation and properties of emulsions stabilized by the adsorption of solid particles at the oil-water interface are reviewed. Comparison is made with the behaviour of surfactant-stabilized emulsions. Many of the properties of Pickering emulsions are attributed to the large free energy of adsorption for particles. The main differences is due to the irreversible adsorption of particles to the interface. Phase inversion from w/o (water-in-oil) to o/w (oil-in-water) can be brought by increasing the volume fraction of water. Hydrophilic particles tend to form o/w emulsion whereas hydrophobic particles form w/o emulsion. The contact angle at the oil-water interface is main parameter to decide the emulsion type. The aspects of stability of Pickering emulsions are in contrast to general emulsions in some points. The possibility using Pickering emulsions for cosmetics is also proposed.

Improvement in Water Resistance of Desulfurized Gypsum by Novel Modification of Silicone Oil Paraffin Composite Emulsion-based Waterproofing Agent

  • Cao, Jing-Yu;Li, Jin-Peng;Jiang, Ya-Mei;Wang, Su-Lei;Ding, Yi;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.558-565
    • /
    • 2019
  • In this study, dimethyl silicone oil and liquid paraffin were combined and subsequently emulsified; the resulting mixture was innovatively incorporated into desulfurized gypsum to resolve its drawback of a poor water resistance. The waterproof mechanism of the composite emulsion and liquid paraffin emulsion with mass fractions of 1%, 2%, 3%, and 4% were investigated. The effect of the desulfurized gypsum on the waterproof performance and basic mechanical properties were also investigated. The configuration of the composite waterproofing agent was characterized by FTIR and 1HNMR. The results showed that, compared with the traditional liquid paraffin emulsion-based waterproofing agent, the softening coefficient of the silicone oil paraffin composite emulsion-based water-repellent agent was increased by 60% and attained a value of 0.89. Combined with the waterproof mechanism and microscope morphology analysis of gypsum hydration products, the improvement in the water resistance of water resistance was primarily attributed to the formation of a silicone hydrophobic membrane between the crystals of the gypsum block; this ensured that water could not penetrate the crystal.

Purification and Properties of Biosurfactant from Pseudomonas aeruginosa KK-7 (Pseudomonas aeruginosa가 생산하는 biosurfactant의 분리 및 특성)

  • 김대원;김민주;강상모
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.337-345
    • /
    • 1995
  • Biosurfactants produced by Pseudomonas aeroginosa KK-7 were purified and their properties were studied. The bacterial surfactant was seperated into two sorts of biosufactants (Type I, 11) by silica gel column chromatograpgy. On the basis of physiochemical analysis, Type I was found to be mixture of two glycolipids with M.W. 800, and Type II was peptide with M.W. 1300. The Type 11 biosurfactant was compose of glutamic acid, proline, glycine, leucine, histidine. The crude extract was used to dertermine some properties as a surfactant. The biosurfactant had the properties as stronger emulsification agent and a stronger stabilizing agent emulsion than any other surfactants tested.

  • PDF

The Effects of HLB Value of the Surfactants Added in the Silicon Oil Emulsion Antifoamer on the Antifoaming Ability (실리콘오일 에멀젼 소포제 조성에 있어서 유화제의 HLB가 소포성능에 미치는 영향)

  • Kim, Young-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.223-232
    • /
    • 2010
  • The effects of HLB value of nonionic mixed surfactants on the stability and antifoaming ability for silicon oil type emulsions were studied. To obtain a stable silicone emulsions, a higher HLB values and higher content of surfactants were preferred. To obtain a good antifoaming ability, however, a lower HLB value (more hydrophobic) and a lower content of the surfactants were preferred. It was observed, at lower HLB values(8 or 9), that the silicone oil drops were spreaded on the foam surface and effectively reduced the surface tension. And the spreading phenomena presumably acted as an antifoaming mechanism. Therefore, a higher hydrophobicity of the silicone oil emulsion resulted in a higher ability of antifoaming action.

Water Repellent Coating of Carbon Cloth with Different Size PTFE and Gas Permeabilities (PTFE 크기 변화에 따른 Carbon Cloth 발수 코팅과 가스 투과도 변화)

  • Jeon, Hyeon;Cho, Tae-Hwan;Choi, Weon-Kyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.313-320
    • /
    • 2010
  • Carbon cloth was impregnated into PTFE emulsion. PTFE is a fluoropolymer used as a coating material in various fields due to its hydrophobicity and excellent mechanical properties. In this study, PTFE emulsion was prepared different particle size of 5~500 nm and $3{\sim}5{\mu}m$. FE-SEM and FT-IR spectroscopy were used microscopic observation and investigation of chemical structure change after PTFE coating. Mass variations, gas permeability and water contact angles were analyzed to determine a GDL performance of PTFE coated carbon cloth. PTFE coated carbon cloth show different mass increase according as PTFE concentration and the number of coating times. Water contact angle of PTFE coated carbon cloth was not effected by size of PTFE particle and the number of coating time; meanwhile, gas permeability was rapidly changed at carbon cloth coated by emulsion with size of $3{\sim}5{\mu}m$ PTFE particle.

Fabrication and Characterization of Silica Coated Fe3O4 Nanoparticles in Reverse Micro Emulsion (마이크로에멀젼법을 이용하여 실리카 코팅된 나노 Fe3O4 분말의 합성과 분석연구)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Hwang, Kwang-Taek;Yang, Hee-Seung;Kim, Kyung-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.113-116
    • /
    • 2010
  • The silica coated $Fe_3O_4$ nanoparticles have been synthesized using a micro-emulsion method. The $Fe_3O_4$ nanoparticles with the sizes 6 nm in diameter were synthesized by thermal decomposition method. Hydrophobic $Fe_3O_4$ nanoparticles were coated silica using surfactant and tetraethyl orthosilicated (TEOS) as a $SiO_2$ precursor. Shell thickness of silica coated $Fe_3O_4$ can be controlled (11~20 nm) through our synthetic conditions. The $Fe_3O_4$ and silica coated $Fe_3O_4$ nano powders were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD) and vortex magnetic separation (VMS).

Development of a Supported Emulsion Liquid Membrane System for Propionic Acid Separation in a Microgravity Environment

  • Li, Jin;Hu, Shih-Yao B.;Wiencek, John M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.6
    • /
    • pp.426-432
    • /
    • 2001
  • Perstractive fermentation is a good way to increase the productivity of bioreactors. Us-ing Propionibacteria as the model system, the feasibility of using supported emulsion liquid mem-brane(SELM) fro perstractive fermentation is assessed in this study. Five industrial solvents were considered as the solvent for perparing the SELM. The more polar a solvent, is the higher the par-tition coefficeint However, toxicity of a solvent also increases with its polarity. CO-1055(indus-trial decanol/octanol blend)has the highest partition coefficient toward propionic acid among the solvents that has no molecular toxicity toward Propionibacteria, A preliminary extraction study was conducted using tetradecane as solvent in a hydrophobic hollow fiber contactor. The results confirmed that SELM eliminates the equilibrium limitation of conventional liquid-liquid extrac-tion and allows the use of a non-toxic solvent with low partition coefficient.

  • PDF