• Title/Summary/Keyword: Hydrophobic compounds

Search Result 192, Processing Time 0.023 seconds

Improvement of Solubility of Atorvastatin Calcium Using Self-Microemulsion Drug Delivery System(SMEDDS) (자가미세유화를 통한 아토르바스타틴 칼슘의 난용성 개선)

  • Lee, Jun-Hee;Choi, Myoung-Kyu;Kim, Yun-Tae;Kim, Myoung-Jin;Oh, Jae-Min;Park, Jung-Soo;Mo, Jong-Hyun;Kim, Moon-Suk;Khang, Gil-Son;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.6
    • /
    • pp.339-347
    • /
    • 2007
  • SMEDDS is mixture of oils, surfactants, and cosurfactants, which are emulsified in aqueous media under conditions of gentle agitation and digestive motility that would be encountered in the gastro-intestinal(GI) tract. The main purpose of this work is to prepare self-microemulsifying drug delivery system(SMEDDS) for oral bioavailability enhancement of a poorly water soluble drug, atorvastatin calcium. Solubility of atorvastatin calcium was determined in various vehicles. Pseudo-ternary phase diagrams were constructed to identity the efficient self-emulsification region and particle size distributions of the resultant micro emulsions were determined using a laser diffraction sizer. Optimized formulations for in vitro dissolution and bioavailability assessment were $Capryol^{(R)}$ 90(50%), Tetraglycol(16%), and $Cremophor^{(R)}$ EL(32%). The release rate of atorvastatin from SMEDDS was significantly higher than the conventional tablet ($Lipitor^{(R)}$), 2-fold. Our studies illustrated the potential use of SMEDDS for the delivery of hydrophobic compounds, such as atorvastatin calcium by the oral route.

Structure-Activity Relationships of Fungicidal N-Substituted Phenyl 1,3,5- Trimethylpyrazole-4-carboxamides in the Inhibition of Succinate Dehydrogenase (SDH) Isolated from Rhizoctonia solani $K{\ddot{u}}hn$ (벼 잎집무늬 마름병균 (Rhizoctonia solani $K{\ddot{u}}hn$)에서 분리한 Succinate Dehydrogenase (SDH) 에 대한 N-치환 phenyl 1,3,5-trimethylpyrazole-4-carboxamide 유도체의 효소활성저해)

  • Kim, Yong-Whan
    • Applied Biological Chemistry
    • /
    • v.40 no.5
    • /
    • pp.447-450
    • /
    • 1997
  • Eighteen N-substituted phenyl 1, 3, 5-trimethylpyrazole-4-carboxamides were synthesized to screen for their mycelial growth inhibition activity against Rhizoctonia solani $K{\ddot{u}}hn$ $(pEC_{50})$ and to measure enzymatic inhibition activity of these compounds $(pI_{50})$ against succinate dehydrogenase (SDH) isolated from Rhizoctonia solani $K{\ddot{u}}hn$ A structure-activity relationship formulated by regression analysis showed that 79% of the variance in mycelial growth inhibition activity can be explained with SDH inhibition activity and chromatographic capacity factor $(\acute{k})$ as a hydrophobic parameter related to the penetration and transport processes in the biological system.

  • PDF

Investigation of morphological changes of HPS membrane caused by cecropin B through scanning electron microscopy and atomic force microscopy

  • Hu, Han;Jiang, Changsheng;Zhang, Binzhou;Guo, Nan;Li, Zhonghua;Guo, Xiaozhen;Wang, Yang;Liu, Binlei;He, Qigai
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.59.1-59.13
    • /
    • 2021
  • Background: Antimicrobial peptides (AMPs) have been identified as promising compounds for consideration as novel antimicrobial agents. Objectives: This study analyzed the efficacy of cecropin B against Haemophilus parasuis isolates through scanning electron microscopy (SEM) and atomic force microscopy (AFM) experiments. Results: Cecropin B exhibited broad inhibition activity against 15 standard Haemophilus parasuis (HPS) strains and 5 of the clinical isolates had minimum inhibition concentrations (MICs) ranging from 2 to 16 ㎍/mL. Microelectrophoresis and hexadecane adsorption assays indicated that the more hydrophobic and the higher the isoelectric point (IEP) of the strain, the more sensitive it was to cecropin B. Through SEM, multiple blisters of various shapes and dents on the cell surface were observed. Protrusions and leakage were detected by AFM. Conclusions: Based on the results, cecropin B could inhibit HPS via a pore-forming mechanism by interacting with the cytoplasmic membrane of bacteria. Moreover, as cecropin B concentration increased, the bacteria membrane was more seriously damaged. Thus, cecropin B could be developed as an effective anti-HPS agent for use in clinical applications.

Surface Modification of Nano Silica Prepared by Sol-gel Process and Subsequent Application towards Gas-barrier Films (졸-겔 공정으로 제조한 나노 실리카의 표면개질 및 가스차단성 필름으로의 응용)

  • Jang, Hyo Jun;Chang, Mi Jung;Nam, Kwang Hyun;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.68-73
    • /
    • 2019
  • We prepared hydrophobic silica particles by a sol-gel process from tetraethyl orthosilicate (TEOS), followed by coupling the reaction with octyltrimethoxysilane (OTMS) or hexadecyltrimethoxysilane (HDTMS) under various reaction conditions. We confirmed the extent of silica surface modification with organic compounds by SEM-EDS, thermogravimetry and elemental analysis. The silica particles obtained after the hydrolysis reaction of TEOS in ethanol at $50^{\circ}C$ for 24 h and the coupling reaction with OTMS for 2 h at the same temperature displayed the optimum performance in terms of the dispersity in an organic solvent and the surface roughness of films composited with epoxy resins. The oxygen permeability of the composite film with modified-silica was 12% lower than that of using the film without modified-silica.

Characterization of Natural Compounds as Inhibitors of NS1 Endonuclease from Canine Parvovirus Type 2

  • So-Hyung Kwak;Hayeong Kim;Hyeli Yun;Juho Lim;Dong-Hyun Kang;Doman Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.788-796
    • /
    • 2023
  • Canine parvovirus type 2 (CPV-2) has high morbidity and mortality rates in canines. Nonstructural protein 1 (NS1) of CPV-2 has endonuclease activity, initiates viral DNA replication, and is highly conserved. Thus, it is a promising target for antiviral inhibitor development. We overexpressed a 41.9 kDa active recombinant endonuclease in Escherichia coli and designed a nicking assay using carboxyfluorescein and quencher-linked ssDNA as substrates. The optimal temperature and pH of the endonuclease were 37℃ and pH 7, respectively. Curcumin, bisdemethoxycurcumin, demethoxycurcumin, linoleic acid, tannic acid, and α-tocopherol inhibited CPV-2 NS1 endonuclease with IC50 values of 0.29 to 8.03 µM. The extracted turmeric, yerba mate, and sesame cake suppressed CPV-2 NS1 endonuclease with IC50 values of 1.48, 7.09, and 52.67 ㎍/ml, respectively. The binding affinity between curcumin, the strongest inhibitor, and CPV-2 NS1 endonuclease by molecular docking was -6.4 kcal/mol. Curcumin inhibited CPV-2 NS1 endonuclease via numerous hydrophobic interactions and two hydrogen bonds with Lys97 and Pro111 in the allosteric site. These results suggest that adding curcuminoids, linoleic acid, tannic acid, α-tocopherol, extracted turmeric, sesame cake, and yerba to the diet could prevent CPV-2 infection.

Coicis Semen Reduces Staphylococcus aureus Persister Cell Formation by Increasing Membrane Permeability

  • Minjun KIM;Tae-Jong KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.145-156
    • /
    • 2024
  • Unlike resistant cells, persister cells resist antibiotics due to a decreased cellular metabolic rate and can transition back to normal susceptible cells when the antibiotic is removed. These persister cells contribute to the chronic symptoms of infectious diseases and promote the emergence of resistant strains with continuous antibiotic exposure. Therefore, eliminating persister cells represents a promising approach to significantly enhance antibiotic efficacy. Here, we found that Coicis Semen extract reduced Staphylococcus aureus persister cells at a concentration of 0.5 g/L. Linoleic acid and oleic acid, the major components of Coicis Semen extract, exhibited a comparable reduction in persister cells when combined with three antibiotics: ciprofloxacin, oxacillin, and tobramycin. Conversely, these effects were nullified in the presence of the surfactant Tween 80 (1%), suggesting that the hydrophobic characteristics of linoleic acid and oleic acids play a pivotal role in reducing the number of S. aureus persister cells. Considering the concentration-dependent effects of linoleic acid and oleic acid, the persister-reducing activity of Coicis Semen extract was primarily attributed to these fatty acids. Moreover, Coicis Semen extract, linoleic acid, and oleic acid increased the cell membrane permeability of S. aureus. Interestingly, this effect was counteracted by 1% Tween 80, indicating a close association between the reduction of persister cells and the increase in cell membrane permeability. The identified compounds could thus be used to eliminate persister cells, thereby enhancing therapeutic efficacy and shortening treatment duration. When used in conjunction with antibiotics, they may also mitigate chronic symptoms and significantly reduce the emergence of antibiotic-resistant bacteria.

Ligand Based Pharmacophore Identification and Molecular Docking Studies for Grb2 Inhibitors

  • Arulalapperumal, Venkatesh;Sakkiah, Sugunadevi;Thangapandian, Sundarapandian;Lee, Yun-O;Meganathan, Chandrasekaran;Hwang, Swan;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1707-1714
    • /
    • 2012
  • Grb2 is an adapter protein involved in the signal transduction and cell communication. The Grb2 is responsible for initiation of kinase signaling by Ras activation which leads to the modification in transcription. Ligand based pharmacophore approach was applied to built the suitable pharmacophore model for Grb2. The best pharmacophore model was selected based on the statistical values and then validated by Fischer's randomization method and test set. Hypo1 was selected as a best pharmacophore model based on its statistical values like high cost difference (182.22), lowest RMSD (1.273), and total cost (80.68). It contains four chemical features, one hydrogen bond acceptor (HBA), two hydrophobic (HY), and one ring aromatic (RA). Fischer's randomization results also shows that Hypo1 have a 95% significant level. The correlation coefficient of test set was 0.97 which was close to the training set value (0.94). Thus Hypo1 was used for virtual screening to find the potent inhibitors from various chemical databases. The screened compounds were filtered by Lipinski's rule of five, ADMET and subjected to molecular docking studies. Totally, 11 compounds were selected as a best potent leads from docking studies based on the consensus scoring function and critical interactions with the amino acids in Grb2 active site.

Debittering of Citrus Products Using ${\beta}-Cyclodextrin$ Polymer and Ultrafiltration Process (${\beta}-Cyclodextrin$ 중합체와 한외여과 공정을 이용한 감귤류의 쓴맛 성분 제거)

  • Woo, Gun-Jo;Ha, Seung-Mi
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.302-308
    • /
    • 1997
  • ${\beta}-Cyclodextrin\;({\beta}-CD)$ polymers were prepared using epichlorohydrin as a cross linking agent. The polymers were separated into ${\beta}-CD$ soluble polymer $({\beta}-CD\;SP)$ and ${\beta}-CD$ insoluble polymer $({\beta}-CD\;ISP)$ on a 10,000 molecular weight cut-off membrane (YM 10). Optimum separation conditions in the YM 10 were: transmembrane pressure 51.7 kPa, separation temperature $35^{\circ}C$, and volume concentration ratio 10. The flux was $0.025\;mL/cm^{2}/min$ under the optimum conditions. Gel permeation chromatography indicated that ${\beta}-CD\;SP\;and\;{\beta}-CD\;ISP$ had a degree of polymerization of $2{\sim}8$ and over 10, respectively. The formation of an inclusion complex with hydrophobic compounds such as 4-dimethylaminoazobenzene, methyl red, and naringin was compared among ${\beta}-CD,\;{\beta}-CD\;SP\;and\;{\beta}-CD\;ISP$. The molar absorptivity for the two chromatic compounds was increased and the absorption peak was shifted in the presence of ${\beta}-CD$ polymers. Naringin, the principal flavonoid bitter tasting component of citrus fruit, had a low water solubility. The solubility of naringin was increased through the formation of an inclusion complex with ${\beta}-CD$ polymers. There was no significant difference in the formation of an inclusion complex between ${\beta}-CD\;SP\;and\;{\beta}-CD\;ISP$. Reduction of the bitter components from citrus products was shown to be possible when employing ${\beta}-CD\;SP$, while the usage of ${\beta}-CD$ monomer has been limited due to the low water solubility.

  • PDF

Purification and characterization of antifungal compounds produced by Bacillus subtilis KS1 (Bacillus subtilis KS1이 생산하는 항진균물질의 정제 및 특성)

  • Ryoo, Sung-Woo;Maeng, Hack-Young;Maeng, Pil-Jae
    • The Korean Journal of Mycology
    • /
    • v.24 no.4 s.79
    • /
    • pp.293-304
    • /
    • 1996
  • A bacterial strain, KSl, possessing strong antifungal activity was isolated from soil samples of ginseng fields and identified as Bacillus subtilis. In greenhouse test, the culture filtrate of B. subtilis KS1 showed strong protective effect against several fungal diseases of agricultural plants such as cucumber gray mold and wheat leaf rust. In addition, the crude butanol fraction of the culture filtrate exhibited antagonistic effect against several fungi including plant or human pathogens, such as Botrytis maydis, Chytridium lagenarium and Candida albicans. The antifungal compound, SW1, produced by B. subtilis KS1 was purified through consecutive chromatographic separations on a pep-RPC column and a ${\mu}$ Bondapak $C_{18}$ reverse phase column. Temperature and pH showed little effect on the stability of the compound in the ranges $-20-121^{\circ}C$ and pH 4.0-10.0, respectively. The composition and structural characteristics of SW1 were analysed by HPLC and by $^1H-,\;^1H-^1H-COSY$, NOESY, COSY-NOESY and HOHAHA NMR spectroscopy, respectively, which revealed that the compound belongs to iturin A, a typical cyclic antifungal compound produced by B. subtilis. In contrast to the previously reported iturin A compounds which have one or no $-CH_3$ side chain in the hydrophobic hydrocarbon chain of ${\beta}-amino$ acids, SW1 was shown to have a ${\beta}-amino$ acid containing 12-carbon skeleton with two $-CH_3$ side chains.

  • PDF

Adsorption characteristics of Amitrol, Nonylphenol, Bisphenol-A with GACs (흡착특성이 다른 내분비계 장애물질 3종, Amitrol, Nonylphenol, Bisphenol-A의 GACs에서의 흡착 특성)

  • Choi, Keun-Joo;Kim, Sang-Goo;Kwon, Ki-Won;Ji, Yong-dae;Kim, Seung-Hyun;Kim, Chang-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.256-264
    • /
    • 2004
  • Adsorption characteristics of three endocrine disruptors, amitrol, nonylphenol, and bisphenol-A, were evaluated depending on the type and service duration of activated carbon (AC). Bituminous coal-, wood-, and coconut-based coals were tested. Bituminous coal-based AC (BCAC) had the greatest sorption capacity for the three chemicals tested, followed by wood-based AC (WAC) for nonylphenol and coconut palm-based AC (CAC) for bisphenol-A. During the column test, amitrol removal efficiency increased over time, indicating that hydrophilic endocrine disruptors are biodegraded in the AC column. Removal efficiencies of hydrophobic compounds such as nonylphenol and bisphenol-A decreased over time since the main removal mechanism was adsorption. The order of the amitrol removal was: BCAC-5.9 yr, CAC-3.l yr > BCAC-2.2 yr > BCAC-virgin > CAC-virgin > WAC-virgin > WAC-3.l yr. In general, used AC had greater removals than virgin AC. The order of the bisphenol-A removal was: CAC-virgin > BCAC-2.2 yr > CAC-3.l yr > WAC-virgin > BCAC-5.9 yr > WAC-3.l yr. The order of the nonylphenol removal was: BCAC-virgin > WAC-virgin > CAC-3.1 yr, WAC-3.1yr> BCAC-2.2 yr > BCAC-5.9 yr > CAC-3.1 yr. Bituminous coal AC performed the best over time. Endocrine disruptors such as these three compounds appear to be removed effectively by activated carbon through biodegradation and adsorption. Wood and coal based among the virgin ACs and 3.1 years used wood base among the used ACs appeared the lowest carbon usage rate(CUR) for nonylphenol removal by prediction model. Virgin and used coconut base ACs except BCAC had the lowest CUR for removal Bisphenol-A. Biodegradation of nonylphenol and Bisphenol-A did not occurred during the 9,800 bed volume experiment period. BCAC had the highest biodegradation capacity of 46% for amitrol among virgin ACs and the used coal based ACs had 33-44% higher biodegradation capacity than virgin's for amitrol so biodegradation is the effective removal technology for hydrophilic material such as amitrol.