• 제목/요약/키워드: Hydrophobic compounds

검색결과 192건 처리시간 0.028초

CTAB가 코팅된 Silicate을 이용한 소수성 유기물질의 흡착 (Adsorption of Hydrophobic Organic Compounds from Aqueous Solution with CTAB Coated Silicate)

  • 김학성;정영도;한훈석
    • 환경위생공학
    • /
    • 제10권3호
    • /
    • pp.78-84
    • /
    • 1995
  • Cationic surfactants can be used to modify surface of solids to promote adsorption of hydrophobic organic compounds. This behavior is due to the surfactant forming aggregate structure on the solid surface. Partition coefficients are commonly used to quantify the distribution of organic pollutants between the aqueous and particulate phases of aquatic system Partitioning of hydrophobic compounds to cetyltrimethylammonium bromide ( CTAB ) coated silicate has been investigated as a function of surfactant surface coverage at I=0 and 0.1 ionic strength. Toluene, Xylene, TCI sorption experiments demonstrated that the CTAB coated silicate was able to remove these hydrophobic organic compounds from solution The hydrophobic organic compound with the higher Kow had higher removals than lowest Kow hydrophobic organic compound.

  • PDF

극소수성 물질들에 대한 Slow-Stirring방법에 의한 옥탄올/물 분배계수 측정 (Slow-Stirring Methods for Determining the n-Octanol/Water Partition Coefficient(Pow) of Highly Hydrophobic Chemicals)

  • 장희라;이봉재;김균;김용화
    • Environmental Analysis Health and Toxicology
    • /
    • 제20권4호통권51호
    • /
    • pp.351-358
    • /
    • 2005
  • The n -octanol/water partition coefficient (Pow) is one of the most important parameters employed for estimating a chemiral's environmental fate and toxicity. The shake-flask method, one direct experimental method, i.1 prone to experimental artifacts for highly hydrophobic compounds. Thus, a valid method for direct determination of the Pow of highly hydrophobic compounds is needed. The slow -stirring method has been demonstrated to provide reliable log Pow data to log Pow greater than 5. This study was performed to evaluate the accuracy of slow- stirring experiment for determination of log Pow, particularly for highly hydrophobic compounds. 1, 2, 3, 4-tetrachlorobenzene, hexachlorobezene, 2, 2', 3, 3', 5, 5', 6, 6'-octachlorobiphenyl, decachlorobiphenyl, and p, p'-DDT (4.5$\times$0.02, 5.41$\times$0.06, 7.26$\times$0.04, 7.87$\times$0.10, and 6.03$\times$0.06, respectively. The octanol/water partition coefficient by the slow-stirring method were very similar to the literature values. These results indicate that the slow- stirring method allows for reliable determination of log Pow of highly hydrophobic chemicals.

XAD 수지에 의한 친수성 및 소수성 수용성 유기탄소의 특성조사 (Study on Characterization of Hydrophilic and Hydrophobic Fractions of Water-soluble Organic Carbon with a XAD Resin)

  • 정재욱;김자현;박승식;문광주;이석조
    • 한국대기환경학회지
    • /
    • 제27권3호
    • /
    • pp.337-346
    • /
    • 2011
  • 24-hr integrated measurements of water-soluble organic carbon (WSOC) in PM2.5 were made between May 5 and September 25, 2010, on a six-day interval basis, at the Metropolitan Area Air Pollution Monitoring Supersite. A macro-porous XAD7HP resin was used to separate hydrophilic and hydrophobic WSOC. Compounds that penetrate the XAD7HP column are referred to hydrophilic WSOC, while those retained by the column are defined as hydrophobic WSOC. Laboratory calibrations using organic standards suggest that hydrophilic WSOC includes lowmolecular aliphatic dicarboxylic acids and carbonyls with less than 4 or 5 carbons, amines, and saccharides. While the hydrophobic WSOC is composed of compounds of aliphatic dicarboxylic acids with carbon numbers larger than 4~5, phenols, aromatic acids, cyclic acid, and humic-like Suwannee River fulvic acid. Over the entire study period, total WSOC accounted for on average 48% of OC, ranging from 32 to 65%, and hydrophilic WSOC accounted for on average 30.5% (9.3~66.7%) of the total WSOC. Based on the previous results, our measurement result suggests that significant amounts of hydrophobic WSOC during the study period were probably from primary combustion sources. However, on June 9 when 1-hr highest ozone concentration of 130 ppb was observed, WSOC to OC was 0.61, driven by increases in the hydrophilic WSOC. This result also suggests that processes, such as secondary organic aerosol formation, produce significant levels of hydrophilic WSOC compounds that add substantially to the fine particle fraction of the organic aerosol.

NF막을 이용한 EDCs, PhACs, PCPs 물질의 제거 특성 평가 (Removal Characteristics of Endocrine Disrupting Compounds (EDCs), Pharmaceutically Active Compounds (PhACs) and Personal Care Products (PCPs) by NF Membrane)

  • 장혜원;박찬혁;홍승관;윤여민;정진영;정윤철
    • 상하수도학회지
    • /
    • 제21권3호
    • /
    • pp.349-357
    • /
    • 2007
  • Reports of endocrine disrupting compounds (EDCs), pharmaceutically active compounds (PhACs), and personal care products (PCPs) have raised substantial concern in important potable drinking water quality issues. Our study investigates the removal of EDCs, PhACs, and PCPs of 10 compounds having different physico-chemical properties (e.g., molecular weight, and octanol-water partition coefficient ($K_{OW}$)) by nanofiltration (NF) membranes. The rejection of micropollutants by NF membranes ranged from 93.9% to 99.9% depending on solute characteristics. A batch adsorption experiments indicated that adsorption is an important mechanism for transport/removal of relatively hydrophobic compounds, and is related to the octanol-water partition coefficient values. The transport phenomenon associated with adsorption may also depend on solution water chemistry such as pH and ionic strength influencing the pKa value of compounds. In addition, it was visually seen that the retention was somewhat higher for the larger compounds based on their molecular weight. These results suggest that the NF membrane retains many organic compounds due to both hydrophobic adsorption and size exclusion mechanisms.

표면 개질한 알루미나막을 통한 ester 수용액의 증기 투과 (Vapor Permeation of Aqueous Ester Solutions Through Surface-modified Alumina Membrane)

  • 오한기;송근호;이광래
    • 멤브레인
    • /
    • 제10권4호
    • /
    • pp.186-191
    • /
    • 2000
  • Ethyl esters (aroma model compounds; ethyl acetate, ethyl propionate, ethyl butyrate) 수용액으로부터 aroma 화합물의 회수를 위해, 표면 개질한 알루미나막을 이용하여 증기 투과를 수행하였다. Ethyl butyrate의 구동력이 가장 큼에도 불구하고, 투과부에서 ethyl ester의 농도는 ethyl butyrate가 가장 높았으며, ethyl propionate, acetate의 순서로 나타났다. 또한, 물에 대한 ester 화합물의 용해도가 상당히 낮기 때문에 투과부에서 상분리가 일어나 순수한 aroma 화합물을 얻을 수 있었다. 실험 결과, 제조된 소수성 알루미나막은 에스테르 화합물에 대해 높은 선택도와 투과 플럭스를 보여 주었다.

  • PDF

Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1)

  • Vetrivel, Umashankar;Muralikumar, Shalini;Mahalakshmi, B;K, Lily Therese;HN, Madhavan;Alameen, Mohamed;Thirumudi, Indhuja
    • Genomics & Informatics
    • /
    • 제14권2호
    • /
    • pp.53-61
    • /
    • 2016
  • Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.

환경 추적자의 흡착 특성을 이용한 수리지화학적 활용 가능성 고찰 (Potential Application of Environmental Tracer in Hydrogeochemistry Using Sorption Properties)

  • 정성욱;장세은;김민경;김성표;엄우용
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권6호
    • /
    • pp.59-68
    • /
    • 2012
  • This study provided sorption properties of chlorofluorocarbons (CFCs), and elucidated potential application of CFC sorption data in hydrogeochemistry. Prior sorption studies were reviewed for hydrophobic organic compounds similar to the CFCs, because there were only few CFC sorption studies. The CFCs are regarded as relatively conservative chemicals in groundwater environments based on their moderate hydrophobicity. However, thermally altered carbonaceous matter (TACM) can significantly increase sorption capacity and nonlinearity for hydrophobic organic compounds such as CFCs, compared to general soil organic matter. CFC sorption behavior are close to the sorption for reviewed organic chemicals. Therefore, the CFC sorption data can be used for determining hydrogeochemical properties and predicting transport of organic contaminants in TACM-containing aquifer environments.

알콕시 실란기능화 양친성 고분자 전구체를 이용한 유-무기 하이브리드 졸 제조 및 이를 이용한 발수 코팅 (Preparation of O-I hybrid sols using alkoxysilane-functionalized amphiphilic polymer precursor and their application for hydrophobic coating)

  • 이대곤;김나혜;김효원;김주영
    • 접착 및 계면
    • /
    • 제20권4호
    • /
    • pp.146-154
    • /
    • 2019
  • 본 연구에서는 소수성 PPO 사슬과 친수성 PEO 사슬들이 동시에 존재하고, 반응성 알콕시 실란기를 가지고 있는 알콕시 실란 기능화 양친성 고분자 전구체 (Alkoxysilane-functionalized Amphiphilic Polymer, AFAP)를 합성하여, 이를 TEOS과의 Hydrolysis- Polycondensation 반응에서 분산안정제 및 반응속도 조절제로 이용하여서 유-무기 하이브리드 나노입자가 안정적으로 분산된 졸 (Sol)을 제조하였다. 제조된 Sol에 불소 함유 실란화합물을 혼합·반응하여서 불소함유 유-무기 하이브리드 Sol을 제조하였고, 이를 유리 기재에 코팅하고 저온 경화를 통해 기재위에 경화필름을 형성하였다. 형성된 경화 필름은 AFAP 및 불소 함유 실란화합물의 첨가량, 용매 종류에 따라서 표면 경도 및 발수 특성이 변화하였다. 최적의 용매 및 불소 함유 실란화합물 첨가량에서 태양전지나 디스플레이에 적용가능한 투명하면서도 견고한 유-무기 하이브리드 형태의 코팅필름 형성이 가능하였다.

소수성화학물질의 생물축적과 기저독성: 분자크기, 반응속도, 화학적 활성도에 따른 제약 (Bioaccumulation and Baseline Toxicity of Hydrophobic Chemicals: Molecular Size Cutoff, Kinetic Limitations, and Chemical Activity Cut-off)

  • 권정환
    • Environmental Analysis Health and Toxicology
    • /
    • 제23권2호
    • /
    • pp.67-77
    • /
    • 2008
  • It has been observed that the linear relationship between the logarithm of bioconcentration factor (log BCF) of highly hydrophobic chemicals and their log $K_{ow}$ breaks when log $K_{ow}$ becomes greater than 6.0. Consequently, super hydrophobic chemicals were not thought to cause baseline toxicity as a single compound. Researchers often call this phenomenon as "hydrophobicity cutoff" meaning that bioconcentration or corresponding baseline toxicity has a certain cutoff at high log $K_{ow}$ value of hydrophobic organic pollutants. The underlying assumption is that the increased molecular size with increasing hydrophobicity prohibits highly hydrophobic compounds from crossing biological membranes. However, there are debates among scientists about mechanisms and at which log $K_{ow}$ this phenomenon occurs. This paper reviews three hypotheses to explain observed "cutoff": steric effects, kinetic or physiological limitations, and chemical activity cutoff. Although the critical molecular size that makes biological membranes not permeable to hydrophobic organic chemicals is uncertain, size effects in combination with kinetic limitation would explain observed non-linearity between log BCF and log $K_{ow}$. Chemical activity of hydrophobic chemicals generally decreases with increasing melting point at their aqueous solubility. Thus, there may be a chemical activity cutoff of baseline toxicity if there is a critical chemical activity over which baseline effects can be observed.

유-무기 하이브리드 화합물과 Particle-Binder 공정을 이용한 소수성 코팅막 제조 (Preparation of Hydrophobic Coating Layers Using Organic-Inorganic Hybrid Compounds Through Particle-to-Binder Process)

  • 황승희;김효원;김주영
    • 접착 및 계면
    • /
    • 제21권4호
    • /
    • pp.143-155
    • /
    • 2020
  • Sol-Gel 공정을 통해서 제조되는 유-무기 하이브리드 화합물들은 방청 코팅, 방빙 코팅(Anticing), 자가 세정 코팅, 반사 방지 코팅 등과 같은 기능성 코팅 재료로 널리 사용되어져 왔다. 특히 소수성 코팅 표면을 제조하기 위해서는 코팅표면의 표면에너지가 낮고 코팅 표면의 조도를 제어가 요구된다. 표면에너지와 표면 조도를 조절하는 전형적인 공정은 in-situ fabrication 공정, 'Pre-fluorinating/Post-roughening', 'Pre-roughening/ Post-fluorinating이다. 본 연구에서는 in-situ fabrication 공정인 Particle-Binder 공정을 이용해서 소수성 코팅표면을 제조하였다. 3관능기 유기실란화합물과 불소 함유 유기실란 화합물과의 가수분해 및 축합반응을 통해 제조된 불소함유 유-무기 하이브리드를 바인더로 사용하여서 무기물 나노입자와 혼합하여 소수성 코팅액을 제조하고 유리 기재 위에 스핀코팅 후 열건조하여서 코팅막을 제조하였다. 바인더인 유-무기 하이브리드 화합물의 불소 함유 실란화합물의 첨가량, 첨가순서, 무기물 나노입자 첨가량에 따른 코팅막의 물성 변화를 조사하였다. 분석결과 불소 함량이 10 wt%인 유-무기 하이브리드 화합물(GPTi-HF10)을 바인더로 사용하여서 제조된 코팅막이 가장 소수성이 우수하였으며 수접촉각은 (107.52 ± 1.6°), 이 바인더와 무기물 나노입자의 무게비가 1:3인 경우(GPTi-HF10-MS 3.0)에 가장 높은 수접촉각(130.84±1.99°)을 나타내었다.