• Title/Summary/Keyword: Hydrophilic properties

Search Result 507, Processing Time 0.025 seconds

Evaluation of Physical Properties as Magnesium Stearate Blendedin Hydrophilic Matrix Tablets

  • Choi, Du-Hyung;Jung, Youn-Jung;Wang, Hun-Sik;Yoon, Jeong-Hyun;Jeong, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.83-90
    • /
    • 2011
  • Main objectives of this study were to investigate the effects of a lubricant, magnesium stearate, as blended in a hydrophilic matrix tablet and to identify significant factors using a tablet ejection force and a swelling property. The characteristics of tablet ejection were evaluated with three different compression forces (30, 40, and 60 MPa) and two controlled factors, amount of magnesium stearate and its mixing time. A hydrophilic model drug (terazosin HCl dihydrate) was regarded as a default factor. Tablet swelling was also evaluated. The optimal amount of PEG compared to PEO was set to be 88.50% w/w. As the amount of magnesium stearate was varied from 0.79% to 2.20% w/w, the amount of PEO and PEG was adjusted to meet the tablet's total weight while maintaining the ratio between the two excipients constant. As the mixing time of magnesium stearate was increased, the tablet ejection force and the swelling property were decreased. As the amount of magnesium stearate was increased, the tablet ejection force and the swelling property were decreased since the increased mixing time and the amount of magnesium stearate induced hydrophobic properties of the matrix tablet more effectively. The ejection force of the tablet increased as a result of increase in the compression force, which means that the breaking of tablet/die-wall adhesion energy was also increased when the compression energy was increased. The results gavea valuable guide how to choose suitable amount of the lubricant with processing conditions for the development of hydrophilic matrix formulations.

Variation of dissolved organic matter in 2nd treated sewage water by Al(III) coagulant (Al(III) 응집제에 의한 하수처리수 중의 유기물 성상 변화)

  • Kim, Jungsun;Han, Seungwoo;Kim, Suhyun;Kang, Limseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.233-240
    • /
    • 2016
  • Control degree and property changes of dissolved organic matter (DOM) were conducted by coagulation of chemical treatment for 2 sewage treatment plants with different technical methods. As the result, SUVA value of the second treated water (supernatant of the second settling pond after biological treatment) was increased and DOC was reduced in comparison with supplied raw water. And, SUVA value and DOC were reduced by coagulation after coagulation treatment of the second treated water. Properties of dissolved organic matter for 2 sewage treatment plants's DOC were divided. As the result, there was lots of hydrophilic component with hydrophilicity in case of plant A. In case of the second treated water, Plant A showed fulvic acid with little molecular weight was reduced among the hydrophobic component with hydrophobicity, but numic acide with lots of molecular weight was increased. However, in case of plant B, both fulvic acid with little molecular weight and humic acid with lots of molecular weight were increased among the hydrophobic components with hydrophilicity. Before the operation of phosphorus facility, properties of dissolved organic matter after biodegradation with effluent water showed hydrophilic components were reduced and hydrophobic components were increased. However, after coagulation treatment of the second treated water, hydrophilic components and hydrophobic components were outstandingly decreased or increased. During the biodegradation after coagulation treatment, hydrophilic components were significantly decreased and hydrophobic components were increased.

Hydrophilic/Hydrophobic Dual Surface Coatings for Membrane Distillation Desalination (막증류 담수화를 위한 친수성/소수성 이중 표면 코팅)

  • Kim, Hye-Won;Lee, Seungheon;Jeong, Seongpil;Byun, Jeehye
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.3
    • /
    • pp.143-149
    • /
    • 2022
  • Membrane distillation (MD) has emerged as a sustainable desalination technology to solve the water and energy problems faced by the modern society. In particular, the surface wetting properties of the membrane have been recognized as a key parameter to determine the performance of the MD system. In this study, a novel surface modification technique was developed to induce a Janus-type hydrophilic/hydrophobic layer on the membrane surface. The hydrophilic layer was created on a porous PVDF membrane by vapor phase polymerization of the pyrrole monomer, forming a thin coating of polypyrrole on the membrane walls. A rigid polymeric coating layer was created without compromising the membrane porosity. The hydrophilic coating was then followed by the in-situ growth of siloxane nanoparticles, where the condensation of organosilane provided quick loading of hydrophobic layers on the membrane surface. The composite layers of dual coatings allowed systematic control of the surface wettability of porous membranes. By the virtue of the photothermal property of the hydrophilic polypyrrole layer, the desalination performance of the coated membrane was tested in a solar MD system. The wetting properties of the dual-layer were further evaluated in a direct-contact MD module, exploring the potential of the Janus membrane structure for effective and low-energy desalination.

Development of micro- and nanostructures mimicking natural leaf surfaces for controlled hydrophilic and hydrophobic property

  • Kim, Daun;Park, Sunho;Lee, Dohyeon;Nam, Hyeun;Kim, Jangho
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.110-110
    • /
    • 2017
  • Biological systems offer unique principles for the design and fabrication of engineering platforms (i.e., popularly known as "Biomimetics") for various applications in many fields. For example, the lotus leaves exhibit unique surfaces consisting of evenly distributed micro and nanostructures. These unique surfaces of lotus leaves have the ability of superhydrophobic property to avoid getting wet by the surrounding water (i.e., Lotus effect). Inspired by the surface topographies of lotus leaves, the artificial superhydrophobic surfaces were developed using various micro- and nanoengineering. Here, we propose new platforms that can control hydrophilic and hydrophobic property of surfaces by mimicking micro- and nanosurfaces of various natural leaves such as common camellia, hosta plantaginea, and lotus. Using capillary force lithography technology and polymers in combination with biomimetic design principle, the unique micro- and nanostructures mimicking natural surfaces of common camellia, hosta plantaginea, and lotus were designed and fabricated. We also demonstrated that the replicated polymeric surfaces had different hydrophilic and hydrophobic properties according to the mimicking the natural leaf surfaces, which could be used as a simple, but powerful methodology for design and fabrication of controlled hydrophilic and hydrophobic platforms for various applications in the field of agriculture and biological engineering.

  • PDF

Measurement of Dynamic Contact Angle of Droplet on Moving Hydrophobic and Hydrophilic Surfaces (이동하는 소수성 및 친수성 표면에서 액적의 동접촉각 측정)

  • Song, Jungyu;Kim, Hyungdae
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.16-22
    • /
    • 2018
  • This study investigates dynamic wetting behaviors of a water droplet placed on surfaces with different wettability and nano-structures. Hydrophobic and hydrophilic properties on as-received silicon wafers were prepared by fabricating thin films of hydrophobic polymer and hydrophilic nanoparticles via layer-by-layer coating. Dynamic advancing contact angle of droplets on the prepared surfaces was measured at various moving velocities of triple contact line with a high-speed video camera. As advancing velocity of triple contact line increased, dynamic advancing contact angle on the as-received silicon and hydrophobic surfaces sharply increased up to $80^{\circ}$ in the range of order of mm/sec whereas the SiO2 nanoparticle-coated hydrophilic surface maintained low contact angles of about $30^{\circ}$ and then it gradually increased in the velocity range of order of hundred mm/sec. The improved dynamic wetting ability observed on the nanostructured hydrophilic surface can benefit the performance of various phase-change heat transfer phenomena under forced convective flow.

Effect of Membrane Materials on Membrane Fouling and Membrane Washing (막의 재질에 따른 막오염 특성 및 물리·화학적 세척의 영향)

  • Shim, Hyun-Sool;Jung, Chul-Woo;Son, Hee-Jong;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.500-505
    • /
    • 2007
  • The objectives of this research were to (1) identify the membrane fouling potential due to different fractions of NOM (2) correlate the physicochemical properties of NOM and membranes with the adsorption of humic substances on membrane (4) find out the effect of membrane physical and chemical washing according to membrane material. The static adsorption test and adsorption test showed that hydrophobic organics adsorbed much more quickly than hydrophilic organics. In case of the effect of membrane properties on the adsorption of organic fractions, the adsorption rate ratio(a) of hydrophobic membrane (0.016, 0.077) was greater than that of hydrophilic membrane (0.010, 0.033) regardless of the kind of organic fractions. This suggests that the UF membrane fouling were occurred mainly by internal pore size decreasing due to adsorption of organic into pore surface for hydrophobic membrane, and by sieving of organics and forming a gel layer on the membrane surface for hydrophilic membrane. In conclusion, the decrease in the pore volume, which was caused by the organic adsorption into the internal pore, was greater with the hydrophobic membrane than with the hydrophilic membrane. In case of the effect of membrane properties on permeate flux, the rate of flux decline for the hydrophobic membrane was significantly greater than that for the hydrophilic membrane.

Physical and Optical Properties of Hydrophilic Tinted Lens Materials with the Fluoro-substituted Aniline Group

  • Park, Se-Young;Lee, Min-Jae;Sung, A-Young
    • Journal of Integrative Natural Science
    • /
    • v.8 no.1
    • /
    • pp.60-66
    • /
    • 2015
  • The physical and optical properties of polymers with 2-fluoroaniline and 4-fluoroaniline added, which can be used for hydrophilic ophthalmic lenses, were investigated in this study. The UV-blocking properties of 2- and 4-fluoroaniline were also investigated by measuring their UV transmissibility. 2- and 4-Fluoroaniline were used as additives for the basic combination of HEMA, 5% AA, and 1% MMA, and the materials were copolymerized with EGDMA as the cross-linking agent and AIBN as the initiator. The refractive index, water content, optical transmittance, tensile strength, and contact angle were measured to evaluate the physical properties of the produced hydrogel lens. The measured physical properties of the hydrogel contact lens produced with the copolymerized polymer showed a refractive index of 1.425-1.436; a water content of 36.95-44.65%; a visual light transmittance of 66.0-81.0%; a tensile strength of 0.138-0.281 kgf; and a contact angle of $55.02-57.87^{\circ}$. The UV transmissibility was significantly reduced, which indicates that 2-fluoroaniline and 4-fluoroaniline have UV-blocking properties. This study showed that 2- and 4-fluoroaniline are expected to be used as UV-blocking materials in hydrogel ophthalmic lenses whose physical properties, such as their refractive index and water content, do not change.

Super Hydrophilic Properties of SiO2-TiO2 Thin Film Prepared by Sol-Gel Method (졸-겔법에 의한 SiO2-TiO2 박막의 초친수성)

  • Park, Min-Jung;Lee, Kyoung-Seok;Kang, Jong-Bong;Mun, Chong-Soo
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.125-131
    • /
    • 2007
  • [ $TiO_{2}-solution$ ] was aaded in $SiO_{2}-solution$ by various composition. $SiO_{2}-TiO_{2}$ thin films were obtained by the dip-coating method on the $SiO_{2}$ glass substrates, and then heat-treated at various temperature. Nano-size $TiO_{2}$ particles dispersed $SiO_{2}-TiO_{2}$ films showed absorption peak by quantum size effect at short wavelength region $350{\sim}400nm$, which made them good candidates for non-linear optical materials and photo-catalytic materials. The thickness of $SiO_{2}-TiO_{2}$ films were $300{\sim}430nm$. The contact angle of $SiO_{2}-TiO_{2}$ films for water was $5.3{\sim}47.9^{\circ}$, and therefore it is clear that $SiO_{2}-TiO_{2}$ films have super hydrophilic properties and the self-cleaning effects.

Rejection Properties of Hydrophilic Solutes and Micro Organic Pollutants with a Hollow Fiber NF Membrane (중공사 나노여과 막분리를 이용한 친수성 용질과 미량 유기 오염물질의 배제 특성)

  • Jung, Yong-Jun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.205-210
    • /
    • 2005
  • There has been a growing interest in NF membrane for drinking water treatment, because it can remove simultaneously both hardness and hazardous micro pollutants such as pesticides and THM precursors. In this work, a hollow fiber NF membrane known as a composite membrane was employed for the rejection properties of both hydrophilic solutes and micro organic pollutants, where the former was used to evaluate the molecular sieving effect of this membrane and the latter was employed for the investigation of solute-membrane interaction as hydrophobic materials. This membrane effectively rejected the hydrophilic solutes and the permeation of them was mainly controlled by the molecular sieving effects such as molecular weight and molecular width. In the case of all micro organic pollutants, the rejections were varied from 42.2% for Simazine to 91.6% for Malathion, and the parameters related to the steric hindrance could significantly play an important role in the rejection. In the batch type adsorption experiments, all micro organic pollutants were entrapped mildly on the membrane in spite of lower degree compared with that of aromatic compounds, and they were correlated with log K.

Super Hydrophilic Properties of ZrO2 Thin Film Containing TiO2 Photo-Catalysis (광촉매 TiO2 함유 ZrO2 박막의 초친수성)

  • Jung, Ki-Uk;Lee, Tea-Gu;Mun, Chong-Soo
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.211-217
    • /
    • 2008
  • A $ZrO_2$ coating solution containing $ZrO_2$ photo-catalysis, which is transparent in visible light, was prepared by the hydrolysis of alkoxide, and thin films on the $SiO_2$ glass substrate were formed in a dipcoating method. These thin films were heat-treated at temperatures ranging from $250^{\circ}C-800^{\circ}C$ and their characteristics were subjected to thermal analysis, XRD, spectrometry, SEM, EDS, contact angle measurement, and AFM. Tetragonal $ZrO_2$ phase was found in the thin film heat treated at $450^{\circ}C$, and anatase $TiO_2$ phase was detected in the thin film heat-treated at $600^{\circ}C$ and above. The thickness of the films was approximately 300 nm, and the roughness was 0.66 nm. Thus, the film properties are excellent. The films are super hydrophilic with a contact angle of $4.0^{\circ}$; moreover, they have self-cleaning effect due to the photo catalytic property of anatase $TiO_2$.