• Title/Summary/Keyword: Hydrophilic matter

Search Result 55, Processing Time 0.022 seconds

Treatment Efficiency and Organic Matter Characterization of Wastewater through Activated Sludge Process and Advanced Wastewater Treatment Process (활성슬러지공정과 고도처리공정에 따른 하수처리수의 처리효율과 유기물 특성)

  • Hong, JiHea;Sohn, Jinsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.807-813
    • /
    • 2004
  • Wastewater was treated by two different treatment processes; activated sludge process and advanced wastewater treatment process (KNR process) using lab-scale experiment. Two treated wastewater showed good treatment efficiency of organic matter removal, up to 90% removal. Nitrogen and phosphorus were not effectively removed though activated sludge process, while KNR process showed good removal efficiency of nitrogen and phosphorus; 56% nitrogen removal and 95% phosphorus removal. KNR process showed better removal efficiency of organic matter, nitrogen, and phosphorus compared to activated sludge process. Organic matter characterization was tracked though measurement of UV scan, SUVA, and XAD fractionation. Treated wastewater showed higher SUVA value than wastewater influent, indicting less aromatic characteristic of organic matter. XAD fractionation showed hydrophilic fraction decreased though wastewater treatment, suggesting microbes preferentially digest hydrophilic and aliphatic molecules rather than hydrophobic and aromatic molecules of organic matter.

Study of Soluble Organic Matter of Livestock Wastewater Treated by Ionized Gas and Coagulation after Ionized Gas (이온화가스와 응집공정을 조합한 축산폐수의 처리시 용존 유기물의 특성에 관한 연구)

  • Lee, Eun-Ju;Chung, Paul-Gene;Kim, Min-Jeong;Hyun, Mi-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.708-713
    • /
    • 2004
  • This study was performed to investigate the variations of hydrophilic and hydrophobic organic matter fractions in soluble organic matter according to livestock wastewater treatment by ionized gas and coagulation effect to these fractions after ionized gas contact. As a result of experiment, because of ionized gas contact, particle in the surface of livestock wastewater was more smaller and the result was consisted of particle size analysis and the amount of small size was increased. Also, we confirmed that organic matters in livestock wastewater by ionized gas contact were removed. The relation equation between ionized gas contact time(X) and $TCOD_{cr}$(Y) was shown as yscale(y)=3.748-0.431* xscale(X). That between ionized gas contact time(X) and $TCOD_{cr}$(Y) was yscale(y)=3.283-0.463* xscale(X). As respects the HPL(hydrophilic matter)and HPO(hydrophobic matter) fractions of raw in livestock wastewater treatment plant, HPL fraction was 53.2% and HPO fraction was 46.8%. But, HPO fraction according to ionized gas treatment was increased at 30min and after that time, HPL fraction was increased. Also, when we performed coagulation process after ionized gas treatment of raw wastewater, the removal efficiency of organic matter was the highest at 30min of ionized gas treatment because of the variation of HPL and HPO fractions in organic matter by ionized gas. In coagulation process following after ionized gas process, HPO was removed more effective than HPL.

Variation of dissolved organic matter in 2nd treated sewage water by Al(III) coagulant (Al(III) 응집제에 의한 하수처리수 중의 유기물 성상 변화)

  • Kim, Jungsun;Han, Seungwoo;Kim, Suhyun;Kang, Limseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.233-240
    • /
    • 2016
  • Control degree and property changes of dissolved organic matter (DOM) were conducted by coagulation of chemical treatment for 2 sewage treatment plants with different technical methods. As the result, SUVA value of the second treated water (supernatant of the second settling pond after biological treatment) was increased and DOC was reduced in comparison with supplied raw water. And, SUVA value and DOC were reduced by coagulation after coagulation treatment of the second treated water. Properties of dissolved organic matter for 2 sewage treatment plants's DOC were divided. As the result, there was lots of hydrophilic component with hydrophilicity in case of plant A. In case of the second treated water, Plant A showed fulvic acid with little molecular weight was reduced among the hydrophobic component with hydrophobicity, but numic acide with lots of molecular weight was increased. However, in case of plant B, both fulvic acid with little molecular weight and humic acid with lots of molecular weight were increased among the hydrophobic components with hydrophilicity. Before the operation of phosphorus facility, properties of dissolved organic matter after biodegradation with effluent water showed hydrophilic components were reduced and hydrophobic components were increased. However, after coagulation treatment of the second treated water, hydrophilic components and hydrophobic components were outstandingly decreased or increased. During the biodegradation after coagulation treatment, hydrophilic components were significantly decreased and hydrophobic components were increased.

Characteristics of Biodegradation of Organic Matters in the Nakdong River Watershed (낙동강 수계 내 유기물 시료에 따른 생분해 특성)

  • Kim, Jung Sun;Kang, Lim Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.605-611
    • /
    • 2014
  • This research was carried out to examine the concentration and fate of dissolved organic matter due to the increased detention time in middle and down stream of the Nakdong River. Aldo the characteristics of biodegradation of DOM were investigated according to the various water sources. The approaches used to characterize DOM biodegradability include the changes in DOC concentration and DOM fraction. Long-term biodegradation test for each organic source was also conducted. As the result, maximum 50% of DOC was reduced during the first 30 days of biodegradation tests. After 30 days, biodegradation of organic matter was continuously progressed, as showing continuous reduction of DOC. While DOC concentration was reduced, SUVA values for the organic matters were increased. Properties of dissolved organic matter by water sources also showed decreasing hydrophilic components while showing increased hydrophobic components. The more rapid reduction of the hydrophilic components than hydrophobic components might be due to the preferential degradation of the hydrophilic components by microorganisms during biodegradation process.

A Study on Characteristics of Natural Organic Matter using XAD and FTIR in Yeongsan River System (XAD 및 FT-IR을 이용한 영산강수계 광주시 유역 자연유기물질의 분포특성 연구)

  • Lee, Dong-Jin;Chon, Kang-Min;Kim, Sang-Don;Jung, Soo-Jung;Lee, Kyung-Hee;Hwang, Tae-Hee;Lim, Byung-Jin;Cho, Jae-Weon
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.358-363
    • /
    • 2011
  • This study investigated the characteristics of natural organic matter(NOM) with tXAD resin and FT-IR in the Yeongsan river system of Gwangju region. NOM fractionation by XAD 8/4 resins was used to classify hydrophobic and hydrophilic substances. FTIR was applied to classify functional groups in the structure of NOM. In the XAD investigation, most of the four site-samples were mainly hydrophilic substances. In March, hydrophobic substances were dominant in the Gwangju 1 site (GJ-1), while hydrophilic substances were dominant for the other sites. In May, samples of all four sites were hydrophilic with a vigorous activity of microorganism due to increasing temperatures. The October results were very similar with those from March. In the FT-IR investigation, most of the broad and large peaks were assigned to the aliphatic group, particularly the OH group, C-H, $C-H_2$, $C-H_3$, and C-O alcohol group. All were related to hydrophilic substances. Other peaks showed the aromatic group, particularly the C=O (Ketone) Group. As a result, there is an identification of NOM in the Yeongsan river system composing mainly of hydrophilic substances and functional groups (OH, C-H etc.) of the aliphatic compound.

RESEARCH PAPERS : CHARACTERIZATION OF DISSOLVED ORGANIC MATTER IN A SHALLOW EUTROPHIC LAKE AND INFLOWING WATERS

  • Kim, Yong-Hwan;Lee, Seon-Hwa;Akio, Imai;Kazuo, Matsushige
    • Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.93-101
    • /
    • 2002
  • The seasonal patterns of dissolved organic matter (DOM) in Lake Kasumigaura, a shallow, eutrophic lake, and serveral DOM sources in its catchment area were investigated. DOM was fractionated using three resin adsorbents into classes: aquatic humic substances (AHS=humic acid+fulvic acid), hydrophobic neutrals (HoN), hydrophilic acids (HiA), bases (BaS) and hydrophilic neutrals (HiN). The DOM produced significantly different fraction distributions depending on the origin of sample. AHS and HiA prevailed over AHS in the lake while AHS and HiA existed at almost the same concentration levels in the rivers. AHS seems to be a more dominant component in rever water than lake water. The dominance of organic acids was also observed in the DOM sources: forest stream (FS), plowed field percolate (PFP), domestic sewage (DS) and sewage treatment plant effluent (STPE).

Study on the Characteristics of Livestock Wastewater Treatment by Ionized Gas (이온화가스에 의한 축산폐수 처리 특성에 관한 연구)

  • Chung, Paul-Gene;Lee, Eun-Ju;Kim, Min-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.37-41
    • /
    • 2004
  • This paper was studied about the characteristics of treatment by ionized gas for livestock wastewater, aiming at the effects of ionized gas on organic matter, hydrophobic and hydrophilic organic matter in livestock wastewater when the new process of advanced oxidation process was applied for meeting the improved the quality of effluent. The organic matter within treated livestock wastewater by ionized gas was partially mineralized according to the time increasement. The $TCOD_{Mn}$ in the livestock wastewater was decreased from 840mg/L to 340mg/L when treated by ionized gas by the enhancement of time. We occupied the equations of $TCOD_{Cr}$, $SCOD_{Cr}$, $TCOD_{Mn}$ and $SCOD_{Mn}$ as to ionized gas treated time. As $TCOD_{Mn}$ increasing ionized gas treated time, the concentration did not meet the water quality, $COD_{Mn}$ 4Omg/L. So, for removing of the remaining organic matter in the efflent after ionized gas, following process is necessary. After treating the livestock wastewater by ionized gas, coagulation was considerable for organic matter removal up to regulation water quality. From UV scans of the treated livestock wastewater by ionized gas, the wastewater has low aromaticity and good colour.

Evaluation of Haloacetic Acid Formation Potential in Drinking Water Treatment Process by Fraction Technique (정수처리 공정에서 용존 유기물질 분류에 의한 haloacetic acid 생성능 평가)

  • Son, Hee-Jong;Hwang, Young-Do;Ryu, Dong-Choon;Jung, Chul-Woo;Lee, Gun;Son, Hyeng-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1655-1662
    • /
    • 2014
  • A comprehensive fractionation technique was applied to a set of water samples obtained along drinking water treatment process with ozonation and biological activated carbon (BAC) process to obtain detailed profiles of dissolved organic matter (DOM) and to evaluate the haloacetic acid (HAA) formation potentials of these DOM fractions. The results indicated that coagulation-sedimentation-sand filtration treatment showed limited ability to remove hydrophilic fraction (28%), while removal of hydrophobic and transphilic fraction were 57% and 40%, respectively. And ozonation and BAC treatment showed limited ability to remove hydrophobic fractions (6%), while removal of hydrophilic and transphilic fractions were 25% and 18%. The haloacetic acid formation potential (HAAFP)/dissolved organic carbon (DOC) of hydrophilic fraction was the highest along the treatment train and HAAFP/DOC of hydrophilic fraction was higher than hydrophobic and transphilic fraction as 23%~30%, because of better removal for hydrophobic fraction both in concentration and reactivity.

Characteristics of Organic Matters in the Suyeong River During Rainfall Event (강우 시 수영강 유역 내 유기물질의 특성)

  • Kim, Suhyun;Kim, Jungsun;Kang, Limseok
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.487-493
    • /
    • 2018
  • Urban stormwater runoff is the one of the most extensive causes of deterioration of water quality in streams in urban areas. Especially, in the Suyeong River watershed, non-point sources from urban-residential areas are the most common cause of water pollution. Also, it has been ascertained that BOD and COD as indexes of organic matter, have limitation on management of Suyeong River's water quality. In this study, changes of organic matter properties of Suyeong River from inflow of non-point source during rainfall were investigated. Fractions of organic matters were analyzed using water samples collected at two sites (Suyeong River and Oncheon Stream) during a rain event. Variations of dissolved organic carbon (DOC) concentration by rainfall were similar to flow rate change in the river. Distribution of organic matter fraction according to change of rain duration revealed that while hydrophilic component increased at initial rainfall, the hydrophobic component was similar to change in dissolved organic carbon (DOC) concentration. Also, the relative proportion of hydrophilic components in organic matter in river water increased, due to rainfall. Results of biodegradation of organic matters revealed that decomposition rate of organic matters during rainfall was higher than that of during a non-rainfall event.

The Humic Acid Treatment Characteristics by Ionized Gas and Combination with Activated Carbon (이온화가스와 활성탄을 이용한 휴믹산 처리에 관한 연구)

  • Chung, Paul-Gene;Lee, Eun-Ju;Kim, Min-Jeong;Cho, Sun-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.72-77
    • /
    • 2004
  • Laboratory studies were carried out to find out the characteristics of humic acid treatment by activated carbon and ionized gas, In order to increase oxidation power of ionized gas for treating organic matter, we used granular activated carbon. By using $UV_{254}$, easy analysis method, we calculated humic acid concentration and $SCOD_{cr}$ concentration. For an initial concentration of humic acid, 10, 50 and 100ppm, the reaction rate constant by $UV_{254}$ was $8.98{\times}10^{-3}$/min, $5.62{\times}10^{-3}$/min and $4.8{\times}10^{-3}$/min respectively due to the same flow rate of ionized gas. When we added activated carbon to the ionized gas for humic acid treatment, the reaction rate constant increased in 4.13, 3.65 and 3.15 times. So, by using activated carbon in treating humic acid by ionized gas, oxidation power of organic matter by ionized gas was increased. The hydrophobic fraction constitutes 98% of organic matter for humic acid at the beginning. After the treatment using ionized gas for humic acid, the hydrophobic fraction decreased by 63~65% and the hydrophilic one increased by 35~37%. So, it was proved that the treatment increased the hydrophilic fraction in organic matter.