• 제목/요약/키워드: Hydrolysis

검색결과 3,735건 처리시간 0.032초

발효당 생산을 위한 목질계 바이오매스의 2단 산당화 (Two-step Acid Hydrolysis Method for Producing Fermentable Sugar from Lignocellulosic Biomass)

  • 박장한;김준석
    • Korean Chemical Engineering Research
    • /
    • 제54권1호
    • /
    • pp.1-5
    • /
    • 2016
  • 목질계 바이오매스를 이용하여 효소를 사용하지 않고 발효당을 얻기 위해 황산을 이용한 당화를 수행하였다. 바이오매스로는 pinus rigida와 palm농업 부산물인 EFB를 사용하였다. 산을 이용한 당화에서는 당의 과분해 생성물을 줄이기 위한 당화조건을 생각해 보아야 한다. 따라서 본 연구에서는 목질계 바이오매스를 이용한 2단 산당화를 수행하였다. 산을 이용한 1차 가수분해에서는 72 wt%의 황산을 이용하여 $80^{\circ}C$에서 반응시켰을 경우 가장 높은 당화율을 보였고 pinus rigida와 EFB 각각 11.49 wt%, 32 wt%의 당화율을 보였다. 이후 1차 가수분해에서 얻은 액상을 9~15 wt%의 산농도가 되도록 묽혀 $50{\sim}120^{\circ}C$의 온도로 2차 가수분해를 진행했다. 2차 가수분해시 9%의 황산농도와 $120^{\circ}C$의 온도조건에서 80분간 반응시켰을 때 최종 글루코오스 당화율은 pinus rigida의 경우 86.8 wt.% (39 g/L), EFB의 경우 95.3 wt%(32.4 g/L)를 얻을 수 있었다. 각 단계에서 분석된 결과는 물질수지를 통해 확인하고 당화 효율을 비교해 보았다.

Single-stranded DNA Enhances the Rate of Product Release During Nucleotide Hydrolysis Reaction by T7 DNA Helicase

  • Kim, Dong-Eun;Jeong, Yong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권10호
    • /
    • pp.1618-1622
    • /
    • 2006
  • Bacteriophage T7 gp4A' is a ring-shaped hexameric DNA helicase that catalyzes duplex DNA unwinding using dTTP hydrolysis as an energy source. To investigate the effect of single-stranded DNA (ssDNA) on the kinetic pathway of dTTP hydrolysis by the T7 DNA helicase complexed with ssDNA, we have first determined optimal concentration of long circular M13 single-stranded DNA and pre-incubation time in the absence of $Mg^{2+}$ which is necessary for the helicase-ssDNA complex formation. Steady state dTTP hydrolysis in the absence of $Mg^{2+}$ by the helicase-ssDNA complex provided $k_{cat}$ of $8.5\;{\times}\;10^{-3}\;sec^{-1}$. Pre-steady state kinetics of the dTTP hydrolysis by the pre-assembled hexameric helicase was monitored by using the rapid chemical quench-flow technique both in the presence and absence of M13 ssDNA. Pre-steady state dTTP hydrolysis showed distinct burst kinetics in both cases, indicating that product release step is slower than dTTP hydrolysis step. Pre-steady state burst rates were similar both in the presence and absence of ssDNA, while steady state dTTP hydrolysis rate in the presence of ssDNA was much faster than in the absence of ssDNA. These results suggest that single-stranded DNA stimulates dTTP hydrolysis reaction by T7 helicase by enhancing the rate of product release step.

중성염이 Poly(ethylene terephthalate) 직물의 알칼리 가수분해에 미치는 영향(II) (Effects of Neutral Salts on Alkaline Hydrolysis of Poly(ethylene terephthalate) (II) - Anionic Effect -)

  • 도성국;조환
    • 한국염색가공학회지
    • /
    • 제6권2호
    • /
    • pp.10-16
    • /
    • 1994
  • Neutral salts have negative or positive effects on the rates of many chemical reactions and also on the rates of acidic and alkaline hydrolysis of carboxylic esters. The direction of neutral salt effects on the hydrolysis of ester depends on the charge of esters. Neutral salts accelerate alkaline hydrolysis of esters with negative charge, but decelerate alkaline hydrolysis of esters with positive charge, and have little effect on the alkaline hydrolysis of neutral esters. It is expected that the rate of the alkaline hydrolysis of Poly(ethylene terephthalte) (PET), polymeric solid carboxylic polyester with carboxyl end group at the polymer end, is also influenced positively by neutral salts. In the present work, to clarify the mechanism of the neutral salt effect on the alkaline hydrolysis of PET, many salts with different anions like NaF, NACl, NaBr, NaI were added to the aqueous alkaline solutions. Then PET was hydrolyzed with aqueous solutions of many salts in alkali metal hydroxides under various conditions. Some conclusions obtained from the experimental results were summarized as follows. The reaction rate of the alkaline hydrolysis of PET was increased by the addition of neutral salts and In k was increased nearly linearly with the square root of ionic strength of reaction medium. This fact suggested that the ionic strength effect by Debye-Huckel and Bronsted theory was exerted on the reaction. The specific salt effect was also observed. The reaction rate was increased with the decrease in the nucleophilicity of anions of neutral salts, i.e., in the order of $F^-$ <$Cl^-$<$Br^-$<$I^-$. It was thought that the reaction rate was increased in the order of $F^-$ <$Cl^-$<$Br^-$<$I^-$. because the completion of anions with $OH^-$ for carbonyl carbon became weaker with the decrease in the nucleophilicity and with the increase in the size of anions.

  • PDF

$^1H$-NMR에 의한 Xylan의 황산가수분해 과정에서 나타나는 반응 동력학 연구 (Kinetic Study of Xylan Hydrolysis and Decomposition in Concentrated Sulfuric Acid Hydrolysis Process by $^1H$-NMR Spectroscopy)

  • 조대행;김용환;김병로;박종문;성용주;신수정
    • 펄프종이기술
    • /
    • 제43권3호
    • /
    • pp.52-58
    • /
    • 2011
  • Proton-NMR spectroscopic method was applied to kinetic study of concentrated sulfuric acid hydrolysis reaction, especially focused on 2nd step of acid hydrolysis with deferent reaction time and temperature as main variables. Commercial xylan extracted from beech wood was used as model compound. In concentrated acid hydrolysis, xylan was converted to xylose, which is unstable in 2nd hydrolysis condition, which decomposed to furfural or other reaction products. Without neutralization steps, proton-NMR spectroscopic analysis method was valid for analysis of not only monosaccharide (xylose) but also other reaction products (furfural and formic acid) in acid hydrolyzates from concentrated acid hydrolysis of xylan, which was the main advantages of this analytical method. Higher temperature and longer reaction time at 2nd step acid hydrolysis led to less xylose concentration in xylan acid hydrolyzate, especially at $120^{\circ}C$ and 120 min, which meant hydrolyzed xylose was converted to furfural or other reaction products. Loss of xylose was not match with furfural formation, which meant part of furfural was degraded to other undetected compounds. Formation of formic acid was unexpected from acidic dehydration of pentose, which might come from the glucuronic acid at the side chain of xylan.

Temperature-Dependent Hydrolysis Reactions of U(VI) Studied by TRLFS

  • Lee, J.Y.;Yun, J.I.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • 제1권1호
    • /
    • pp.65-73
    • /
    • 2013
  • Temperature-dependent hydrolysis behaviors of aqueous U(VI) species were investigated with time-resolved laser fluorescence spectroscopy (TRLFS) in the temperature range from 15 to $75^{\circ}C$. The formation of four different U(VI) hydrolysis species was measured at pHs from 1 to 7. The predominant presence of $UO{_2}^{2+}$, $(UO_2)_2(OH){_2}^{2+}$, $(UO_2)_3(OH){_5}^+$, and $(UO_2)_3(OH){_7}^-$ species were identified based on the spectroscopic properties such as fluorescence wavelengths and fluorescence lifetimes. With an increasing temperature, a remarkable decrement in the fluorescence lifetime for all U(VI) hydrolysis species was observed, representing the dynamic quenching behavior. Furthermore, the increase in the fluorescence intensity of the further hydrolyzed U(VI) species was clearly observed at an elevated temperature, showing stronger hydrolysis reactions with increasing temperatures. The formation constants of the U(VI) hydrolysis species were calculated to be $log\;K{^0}_{2,2}=-4.0{\pm}0.6$ for $(UO_2)_2(OH){_2}^{2+}$, $log\;K{^0}_{3,5}=-15.0{\pm}0.3$ for $(UO_2)_3(OH){_5}^+$, and $log\;K{^0}_{3,7}=-27.7{\pm}0.7$ for $(UO_2)_3(OH){_7}^-$ at $25^{\circ}C$ and I = 0 M. The specific ion interaction theory (SIT) was applied for the extrapolation of the formation constants to infinitely diluted solution. The results of temperature-dependent hydrolysis behavior in terms of the U(VI) fluorescence were compared and validated with those obtained using computational methods (DQUANT and constant enthalpy equation). Both results matched well with each other. The reaction enthalpies and entropies that are vital for the computational methods were determined by a combination of the van't Hoff equation and the Gibbs free energy equation. The temperature-dependent hydrolysis reaction of the U(VI) species indicates the transition of a major U(VI) species by means of geothermal gradient and decay heat from the radioactive isotopes, representing the necessity of deeper consideration in the safety assessment of geologic repository.

가수분해 식물성 단백질의 효소적 생산을 위한 효소 반응 시스템의 최적화 (Optimization of Enzymatic Treatment for the Production of Hydrolyzed Vegetable Protein)

  • 채희정;인만진;김민홍
    • 한국식품과학회지
    • /
    • 제29권6호
    • /
    • pp.1125-1130
    • /
    • 1997
  • 효소 분해에 의해 HVP를 생산하는데 있어서 여러 가지 효소의 조합, 효소 첨가 순서, pH, 산세척 등이 가수분해에 미치는 효과를 검토하였다 Endoprotease으로서 Neutrase와 Alcalase를 혼합하여 사용하는 것이 Alcalase를 단독 사용하는 것 보다 가수분해도가 높았으며 exoprotease인 Flavourzyme을 이용하여 2차 가수분해함으로써 60%이상의 가수분해도를 얻을 수 있었다. 2차 가수분해 시 원심분리에 의해 미반응 불용 성분을 제거하는 것은 가수분해도에 큰 영향을 미치지 않았고, 1차 가수분해 후 2차 원심분리의 수세수를 원료 현탁에 재사용하였을 경우 가수분해도 및 단백질 회수율을 높일 수 있었다. Ca이온의 첨가에 의한 Neutrase의 안정화 효과는 가수분해도에 큰 영향을 미치지 않았다. 탄수화물 분해효소의 사용과 산세척의 반복에 의해 가수분해도와 생산물의 단백질 함량이 각각 증가함을 알 수 있었다. Endoprotease과 exoprotease을 별도로 각각 처리하기보다는 동시 처리하는 것이 가수분해에 효율적이었다.

  • PDF

고농도 소맥 글루텐의 효소적 가수분해와 약산에 의한 전처리 효과 (Effect of Weak Acid Pretreatment on the Enzymic Hydrolysis against Wheat Gluten of High Concentration)

  • 이기영;홍영식;이철호
    • 한국식품영양과학회지
    • /
    • 제27권6호
    • /
    • pp.1110-1116
    • /
    • 1998
  • To determine the optimum conditions for the enzymic hydrolysis against wheat gluten of high con centrations (6~14%, w/w, protein), a hydrolysis system combining weak acid pretreatment and enzymic hydrolysis was investigated. Alcalase showed the highest DH(degree of hydrolysis) of the tested proteases. After hydrolysis by alcalase, subsequently peptidases were applied for the better DH of the wheat gluten hydrolyzate. Peptidase NP2 showed the highest DH of the tested peptidases, but flavour zyme was shown for the lowest bitter taste of the resulting hydrolyzate. In order to minimize aggregation or gelling at higher initial substrate concentration during heat treatment, wheat gluten suspension was pretreated with possibly low concentrations of hydrochloric acid at 105oC for 1 hour, and then enzy matically hydrolysed with alcalase and subsequently with flavourzyme. Each required minimum concen tration of hydrochloric acid in the wheat gluten suspension of 6, 8, 10, 12, and 14%(w/w, protein) was 0.10, 0.15, 0.20, 0.225, and 0.275N, respectively. After the subsequent enzymic treatment by alcalase and peptidase NP2 for 24 hrs, the nitrogen solubility in the final wheat gluten hydrolysates was increased to 94.9, 86.4, 85.3, 89.3 and 95.0%, and their amino nitrogen content was increased to 2.87, 5.68, 7.34, 9.71 and 12.50mg/m, respectively.

  • PDF

대체연료(代替燃料) 생산(生産)을 위한 목질재료(木質材料)의 가수분해(加水分解)에 관한 연구(硏究) (III) - 폭쇄(爆碎)처리재의 산소분해시(酸素分解時) Cellulase 산소(酸素)의 정량적(定量的) 회수(回收)에 관하여 - (Studies on the Enzymatic Hydrolysis of Lignocellulosic Materials for the Alternative Fuels(III) - Quantitative Recycling of Cellulase Enzyme in the Enzymatic Hydrolysis of Steam-Exploded Woods -)

  • 조남석;임창숙;이재성;박신
    • Journal of the Korean Wood Science and Technology
    • /
    • 제19권1호
    • /
    • pp.14-21
    • /
    • 1991
  • Steam-exploded woods were delignified by two-stage with a 0.3% NaOH extraction and oxygen-alkali bleaching and were subjected to the enzymatic hydrolysis with cellulase enzyme. Also, an improved almost quantitative recycle process of cellulase enzyme was discussed. In enzyme recovery by affinity method, The first recycling showed relatively high hydrolysis rate of 96.4%. Even at the third recycle, hydrolysis rate was 87.0 percents. In the case of cellulase recovery by ultrafiltration method, first 2 recycling treatments resulted in very high hydrolysis rates, 96.8% and 95.0%, respectively. Even the third recycling showed about 93.6%. Steam-explosion treatment of oak wood followed by 2-stage delignification with alkali and oxygen-alkali produced a excellant substrate for the enzymatic hydrolysis that allowed almost quantitative recycle of cellulase.

  • PDF

Morphology of Nanocelluloses and Micro-sized Cellulose Fibers Isolated by Acid Hydrolysis Method

  • Cho, Mi-Jung;Park, Byung-Dae
    • 펄프종이기술
    • /
    • 제41권5호
    • /
    • pp.26-32
    • /
    • 2009
  • As a part of utilizing the nanocellulose (NC) from lignocellulosic components of wood biomass, this paper reports preliminary results on the products of sulfuric acid hydrolysis. The purpose of this study was to investigate the morphology of both NC and micro-sized cellulose fiber (MCF) isolated by acid hydrolysis from commercial microcrystalline cellulose (MCC). Field emission.scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were employed to observe the acid hydrolysis suspension, NC, and MCF. The electron microscopy observations showed that the acid hydrolysis suspension, before separation into NC and MCF by centrifugation, was composed of nano-sized NCs and micro-sized MCFs. The morphology of isolated NCs was a whisker form of rod-like NCs. Measurements of individual NCs using TEM indicated dimensions of 6.96$\pm$0.87 nm wide by 178$\pm$55 nm long. Observations of the MCFs showed that most of the MCC particles had de-fibered into relatively long fibers with a diameter of 3-9 ${\mu}m$, depending on the degree of acid hydrolysis. These results suggest that proper technologies are required to effectively realize the potentials of both NCs and MCFs.

핵산 모델로서 Phosphate Diester들의 가수분해 반응 (Hydrolysis of Phosphate Diesters as Nucleic Acid Model)

  • 성낙도
    • Applied Biological Chemistry
    • /
    • 제37권6호
    • /
    • pp.447-450
    • /
    • 1994
  • RNA의 가수분해시에 생성되는 cyclic phosphate 중간체의 모델 화합물인 ethylene phosphate의 P-O결합 분해속도 상수는 $100^{\circ}C$ 에서 $k=3{\times}10^{-7}s^{-1}({\Delta}H{\neq}=24\;kcal,\;{\Delta}S{\neq}=25.5\;eu)$이었으며 DNA모델 화합물인 dimethylphosphate는 $150^{\circ}C$에서 $1{\times}10^{-11}s^{-1}({\Delta}H{\neq}=36\;kcal,\;{\Delta}S{\neq}=25.5\;eu)$이었다. RNA모델 화합물인 hydroxyethylmethylphosphate의 가수분해는 dimethylphosphate의 C-O결합이 가수분해되는 반응속도와 비교될 만한 정도의 반응속도가 관측되었다.

  • PDF