• Title/Summary/Keyword: Hydrological model

Search Result 892, Processing Time 0.035 seconds

Assessment of Small Mountainous Catchment Runoff at Yongdam-dam Guryang (산지 소규모 유역의 유출 특성 평가-용담 구량천)

  • Kim, Seong-Goo;Chang, Hyung-Joon;Lee, Hyo-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.633-641
    • /
    • 2018
  • The risk of disasters, such as floods and drought, has increased. Reliable hydrological data is important for analyzing the water resource and designing hydraulic structure to manage these risks. The Yongdam Guryang river catchment located in the central of Korea is the research catchment of K-water and UNESCO IHP, and the hydrological data, such as rainfall, runoff, evapotranspiration, etc. has been observed at the catchment. The aim of this study was to assess the runoff characteristics of the small mountainous catchment of Korea based on the observed hydrological data, and the Probability Distributed Model was applied as the Rainfall-Runoff Model at the Yongdam Guryang river catchment. The hydrological data was divided into the wet period from June to September and dry period from October to May according to data analysis. The runoff ratio was 0.27~0.41 in the wet period and 0.30~0.45 in the dry period. The calibration result by the Probability Distributed Model showed a difference in the calibrated model parameters according to the periods. In addition, the model simulated the runoff accurately except for the dry period of 2015, and the result revealed the applicability of the PDM. This study showed the runoff characteristics of the small mountainous catchment by dividing the hydrological data into dry and wet periods.

Application of transfer learning for streamflow prediction by using attention-based Informer algorithm

  • Fatemeh Ghobadi;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.165-165
    • /
    • 2023
  • Streamflow prediction is a critical task in water resources management and essential for planning and decision-making purposes. However, the streamflow prediction is challenging due to the complexity and non-linear nature of hydrological processes. The transfer learning is a powerful technique that enables a model to transfer knowledge from a source domain to a target domain, improving model performance with limited data in the target domain. In this study, we apply the transfer learning using the Informer model, which is a state-of-the-art deep learning model for streamflow prediction. The model was trained on a large-scale hydrological dataset in the source basin and then fine-tuned using a smaller dataset available in the target basin to predict the streamflow in the target basin. The results demonstrate that transfer learning using the Informer model significantly outperforms the traditional machine learning models and even other deep learning models for streamflow prediction, especially when the target domain has limited data. Moreover, the results indicate the effectiveness of streamflow prediction when knowledge transfer is used to improve the generalizability of hydrologic models in data-sparse regions.

  • PDF

Comparison of SWAT-K and HSPF for Hydrological Components Modeling in the Chungju Dam Watershed (충주댐 유역의 SWAT-K와 HSPF모형에 의한 수문성분 모의특성 비교 분석)

  • Kim, Nam-Won;Shin, Ah-Hyun;Kim, Chul-Gyum
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.609-619
    • /
    • 2009
  • SWAT-K model is a modified version of the original SWAT, and is known to more accurately estimate the streamflows and pollutant loadings in Korean watersheds. In this study, its hydrological components were compared with those of HSPF in order to analyse the differences in total runoff including evapotranspiration(ET), surface flow, lateral flow and groundwater flow from the Chungju Dam watershed during $2000{\sim}2006$. Averaged annual runoff with SWAT-K overestimated by 1%, and HSPF underestimated it by 3% than observed runoff. Determination coefficients($R^2$) for observed and simulated daily streamflows by both the models were relatively good(0.80 by SWAT-K and 0.82 by HSPF). Potential ET and actual ET by HSPF were lower in winter, but similar or higher than those by SWAT-K. And though there were some differences in lateral and groundwater flows by two models because of the differences in hydrological algorithms, the results were to be reasonable. From the results, it was suggested that we should utilize a proper model considering the characteristic of study area and purposes of the model application because the simulated results from same input data could be different with models used. Also we should develop a novel model appropriate to Korean watersheds by enhancing limitations of the existing models in the future.

Development of a Simulation Model for Reservoir Sizing in a Region with Insufficient Hydrological Data (수문자료 빈곤지역에서의 저수지 규모 결정 모의 모형 개발)

  • 최진규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.67-75
    • /
    • 2000
  • A simulation model for reservoir sizing was developed to be applied in a region with insufficient hydrological data. Reservoir storage balance equation was formulated on a monthly basis. Gajiyama equation was generalized to estimate monthly reservoir inflow more accurately. Monthly evaporation equation on a reservoir water surface was introduced , which was functioned with monthly mean temperature. Generalized Gajiyama equation was applied to estmate reservoir inflow of the Sayeon dam. Nash-Sutcliffe's model efficiency was 0.793. Using developed model for reservoir sizing, water supply capacity was analyzed with 118.000㎥/day on the Sayeon dam. This showed a reasonable result as compared with 110000㎥/day in other technical report. For general application of developed model, a virtual reservoir was considered and its dta of surface area and volume by elevation was prepared using DEM. Using the model, size of reservoir was determined and water supply capacity was anlayzed on a virtual reservoir.

  • PDF

Effects of DEM Resolution on Hydrological Simulation in, BASINS-BSPF Modeling

  • Jeon, Ji-Hong;Ham, Jong-Hwa;Chun G. Yoon;Kim, Seong-Joon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.7
    • /
    • pp.25-35
    • /
    • 2002
  • In this study, the effect of DEM (Digital Elevation Model) resolution (15m, 30m, 50m, 70m, 100m, 200m, 300m) on the hydrological simulation was examined using the BASINS (Better Assessment Science Integrating point and Nonpoint Source) for the Heukcheon watershed (303.3 ㎢) data from 1998 to 1999. Generally, as the cell size of DEM increased, topographical changes were observed as the original range of elevation decreased. The processing time of watershed delineation and river network needed more time and effort on smaller cell size of DEM. The larger DEM demonstrated had some errors in the junction of river network which might affect on the simulation of water quantity and quality. The area weighted average watershed slope became milder but the length weighted average channel slope became steeper as the DEM size increased. DEM resolution affected substantially on the topographical parameter but less on the hydrological simulation. Considering processing time and accuracy on hydrological simulation, DEM grid size of 100m is recommended for this range of watershed size.

Assessment of environmental flows using hydrological methods for Krishna River, India

  • Uday Kumar, A.;Jayakumar, K.V.
    • Advances in environmental research
    • /
    • v.7 no.3
    • /
    • pp.161-175
    • /
    • 2018
  • Krishna River is significantly affected due to Srisailam dam from past 30 years. The impact of this hydraulic structure drastically reduced the minimum flow regime on the downstream, which made the river nearing to decaying stage. In the present paper, Environmental Flow called minimum flow values released for the dam are estimated with the help of three hydrological methods viz., Range of variability Approach (RVA), Desktop Reserve Model (DRM), and Global Environmental Flow Calculator (GEFC). DRM method suggested considering the intermediate values obtained from among the three methods to preserve the ecosystem on the downstream of the river, which amounts to an average annual allocation of 9378 Million Cubic Meter (MCM) which is equal to 23.11% of mean annual flow (MAF). In this regard GEFC and RVA methods accounted for 22% and 31.04% of MAF respectively. The results indicate that current reservoir operation policy is causing a severe hydrological alteration in the high flow season especially in the month of July. The study concluded that in the case of non-availability of environmental information, hydrological indicators can be used to provide the basic assessment of environmental flow requirements. It is inferred from the results obtained from the study, that the new reservoir operations can fulfil human water needs without disturbing Environmental Flow Requirements.

An Investigation of the Hydrological Safety for Downstream Areas Consideration of Dam Discharge (댐 방류량을 고려한 하류지역의 수리안정성 검토)

  • Jun, Kye-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.166-171
    • /
    • 2012
  • This study aims to analyze the hydrological characteristics of downstream areas by the dam discharge of Soyanggang dam by using HEC-RAS Model. As a result of analyzing the data of dam discharge divided into hydropeaking discharge and total discharge, it as found that the maximum hydro-peaking discharge and the maximum total discharge have been 254.4 CMS and 1567.7 CMS respectively for the past 11 years. When the hydro-peaking discharge was applied to HEC-RAS Model, there occurred some sections where the water level rapidly changed, but the velocity of moving water was quite stable in the range between 0.23 m/sec and 1.16m/sec. Besides, when the total discharge was applied to this model, the submersible bridge along the dam downstream was flooded, and in some sections, the water level increased over the flood plain. Accordingly, this study judged that it is required to necessarily consider all the influence made by an increase of Soyanggang Dam's discharge when waterfronts are installed or used at dam downstream areas.

A Study on the Mass Balance Analysis of Non-Degradable Substances for Bioreactor Landfill

  • Chun, Seung-Kyu
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.191-196
    • /
    • 2012
  • Analysis of hydrological safety as well as the determination of many substance concentrations are necessary when bioreactor systems are introduced to landfill operations. Therefore, hydrological and substance balance model was developed since it can be applied to various bioreactor landfill operation systems. For the final evaluation of the model's effectiveness, four different methods of injections (leachate alone, leachate and organic waste water, leachate and reverse osmosis concentrate, and all the above three combination) was applied to 1st landfill site of Sudokwon landfill. As a result, the water content of the hypothetical cases for four different systematic bioreactors is projected to be increased up to 35.5% in next 10 years, and this indicated that there will be no problems in meeting the hydrological safety. Also, the final $Cl^-$ concentration after 10-yr time period was projected to be between from minimum 126 to maximum 3,238 mg/L, which could be still a decrease from the original value of 3,278 mg/L. According to the proposed model, whether the substance concentration becomes increased or decreased largely depends on the ratio of initial quantity of inner landfill leachate and the rate of injection.

Analysis of Hydrological Processes for Musim River Basin by Using Integrated Surface water and Groundwater Model (지표수-지하수 통합모형을 이용한 무심천 유역의 수문과정 해석)

  • Kim, Nam-Won;Chung, Il-Moon;Lee, Jeong-Woo;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.5
    • /
    • pp.419-430
    • /
    • 2007
  • Integrated modelling of surface water and groundwater has become important to satisfy the growing demands for sustainable water resources and improved water quality. In this study, the integrated model of the semi-distributed watershed model, SWA T and the fully-distributed groundwater flow model, MODFLOW is applied to Musirn river basin for the purpose of investigating its applicability to reproduce watershed-scale hydrological processes. This objective is accomplished by first demonstrating good agreement between the simulated discharge hydrographs with the measured hydrographs for the period of 2001 -2004 while simultaneously calibrating the calculated groundwater level distribution to observation wells. Next, the integrated model is used to evaluate the effect of different temporal precipitation averages on hydrodynamic processes of streamflow, percolation, recharge and groundwater discharge. Moreover, comprehensive simulations are performed to present the relationships between monthly precipitation and each hydrological component, and to analyze the temporal-spatial variability of recharge. The results show that the components are highly interrelated, and that the heterogeneity of watershed characteristics such as subbasin slope, land use, soil type causes a significant spatial variation of recharge. Overall it is concluded that the model is capable of reproducing the temporally and spatially varied surface and subsurface hydrological processes at the watershed scale.