• Title/Summary/Keyword: Hydrological analysis

Search Result 798, Processing Time 0.041 seconds

Determining proper threshold levels for hydrological drought analysis based on independent tests (수문학적 가뭄 특성 분석을 위한 독립성 검정 기반의 적정 임계수준 결정)

  • Kim, Tae-Woong;Park, Ji Yeon;Shin, Ji Yae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.193-200
    • /
    • 2020
  • Hydrological drought is directly associated with lack of available water in rivers, reservoirs, and groundwater. It is important to analyze hydrological drought for efficient water resource management because most of rainfall is concentrated in wet seasons and water supply is highly dependent on dams and reservoirs in South Korea. Generally, a threshold level method is useful for defining hydrological droughts. However, this method causes interdependent problems between drought events which result in skewed results in further statistical analysis. Therefore, it is necessary to determine a proper threshold level to represent regional drought characteristics. In this study, applying 50~99 percentiles of daily flow-duration curve, hydrological drought events were extracted, and independence tests were conducted for 12 watersheds. The Poisson independence test showed that 87~99 percentiles were available for most stations except for Yeoju and Pyeongtaek. The generalized Pareto independence test showed that 80~90 percentiles were the most common. Mean excess plot showed that 80 ~ 90 percentiles were the most common. Therefore, the common ranges of the three independent tests were determined for each station and proper threshold levels were recommended for large river basins; 70~76 percentiles for the Han River basin, 87~91 percentiles for the Nakdong River basin, 86~98 percentiles for the Geum River basin, and 85~87 percentiles for the Youngsan and Seomjin River basin.

Application to Evaluation of Hydrologic Time Series Forecasting for Long-Term Runoff Simulation (장기유출모의를 위한 수문시계열 예측모형의 적용성 평가)

  • Yoon, Sun-Kwon;Ahn, Jae-Hyun;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.809-824
    • /
    • 2009
  • Hydrological system forecasting, which is the short term runoff historical data during the limited period in dam site, is a conditional precedent of hydrological persistence by stochastic analysis. We have forecasted the monthly hydrological system from Andong dam basin data that is the rainfall, evaporation, and runoff, using the seasonal ARIMA (autoregressive integrated moving average) model. Also we have conducted long term runoff simulations through the forecasted results of TANK model and ARIMA+TANK model. The results of analysis have been concurred to the observation data, and it has been considered for application to possibility on the stochastic model for dam inflow forecasting. Thus, the method presented in this study suggests a help to water resource mid- and long-term strategy establishment to application for runoff simulations through the forecasting variables of hydrological time series on the relatively short holding runoff data in an object basins.

An Integrated Flood Simulation System for Upstream and Downstream of the Agricultural Reservoir Watershed (농촌 유역 저수지 상·하류 통합 홍수 모의 시스템 구축 및 적용)

  • Kwak, Jihye;Kim, Jihye;Lee, Hyunji;Lee, Junhyuk;Cho, Jaepil;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • To utilize the hydraulic and hydrological models when simulating floods in agricultural watersheds, it is necessary to consider agricultural reservoirs, farmland, and farmland drainage system, which are characteristics of agricultural watersheds. However, most of them are developed individually by different researchers, also, each model has a different simulation scope, so it is hard to use them integrally. As a result, there is a need to link each hydraulic and hydrological model. Therefore, this study established an integrated flood simulation system for the comprehensive flood simulation of agricultural reservoir watersheds. The system can be applied easily to various watersheds because historical weather data and the SSP (Shared Socio-economic Pathways) climate change scenario database of ninety weather stations were built-in. Individual hydraulic and hydrological models were coded and coupled through Python. The system consists of multiplicative random cascade model, Clark unit hydrograph model, frequency analysis model, HEC-5 (Hydrologic Engineering Center-5), HEC-RAS (Hydrologic Engineering Center-River Analysis System), and farmland drainage simulation model. In the case of external models with limitations in conceptualization, such as HEC-5 and HEC-RAS, the python interpreter approaches the operating system and gives commands to run the models. All models except two are built based on the logical concept.

Hydrological homogeneous region delineation for bivariate frequency analysis of extreme rainfalls in Korea (다변량 L-moment를 이용한 이변량 강우빈도해석에서 수문학적 동질지역 선정)

  • Shin, Ju-Young;Jeong, Changsam;Joo, Kyungwon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.49-60
    • /
    • 2018
  • The multivariate regional frequency analysis has many advantages such as an adaption of regional parameters and consideration of a correlated structure of the data. The multivariate regional frequency analysis can provide the broader and more detailed information for the hydrological variables. The multivariate regional frequency analysis has not been attempted to model hydrological variables in South Korea yet. Therefore, it is required to investigate the applicability of the multivariate regional frequency analysis in the modeling of the hydrological variables. The current study investigated the applicability of the homogeneous region delineation and their characteristics in bivariate regional frequency analysis of annual maximum rainfall depth-duration data. The K-medoid method was employed as a clustering method. The discordancy and heterogeneous measures were used to assess the appropriateness of the delineation results. According to the results of the clustering analysis, the employed stations could be grouped into five regions. All stations at three of the five regions led to acceptable values of discordancy measures than the threshold. The stations where have short record length led to the large discordancy measures. All grouped regions were identified as a homogeneous region based on heterogeneous measure estimates. It was observed that there are strong cross-correlations among the stations in the same region.

Spatial analysis of Design storm depth using Geostatistical (지구통계학적 기법을 이용한 설계호우깊이 공간분석)

  • Ahn, Sang Jin;Lee, Hyeong Jong;Yoon, Seok Hwan;Kwark, Hyun Goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1047-1051
    • /
    • 2004
  • The design storm is a crucial element in urban drainage design and hydrological modeling. The total rainfall depth of a design storm is usually estimated by hydrological frequency analysis using historic rainfall records. The different geostatistical approaches (ordinary kriging, universal kriging) have been used as estimators and their results are compared and discussed. Variogram parameters, the sill, nugget effect and influence range, are analysis. Kriging method was applied for developing contour maps of design storm depths In bocheong stream basin. Effect to utilize weather radar data and grid-based basin model on the spatial variation characteristics of storm requires further study.

  • PDF

Shalt-Term Hydrological forecasting using Recurrent Neural Networks Model

  • Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1285-1289
    • /
    • 2004
  • Elman Discrete Recurrent Neural Networks Model(EDRNNM) was used to be a suitable short-term hydrological forecasting tool yielding a very high degree of flood stage forecasting accuracy at Musung station of Wi-stream one of IHP representative basins in South Korea. A relative new approach method has recurrent feedback nodes and virtual small memory in the structure. EDRNNM was trained by using two algorithms, namely, LMBP and RBP The model parameters, optimal connection weights and biases, were estimated during training procedure. They were applied to evaluate model validation. Sensitivity analysis test was also performed to account for the uncertainty of input nodes information. The sensitivity analysis approach could suggest a reduction of one from five initially chosen input nodes. Because the uncertainty of input nodes information always result in uncertainty in model results, it can help to reduce the uncertainty of EDRNNM application and management in small catchment.

  • PDF

Analysis of change in hydrological cycles of South Korea, China and Japan due to the change of their vegetation since 1950 (1950년 이후 한국, 중국, 일본의 식생변화 및 이에 따른 수문순환 변화 분석)

  • Song, Sung-uk;Cho, Eunsaem;Yoo, Chulsang
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.470-483
    • /
    • 2017
  • Changes in land cover or land use, such as changes in forest area, can cause changes in water and energy circulation, ultimately affecting overall hydrological cycle including stream flow, evapotranspiration, soil moisture, and base flow. In this study, the changes of the hydrological processes over the past long period were simulated by using large-scale surface hydrologic model along with various soil, land use, vegetation, and meteorological data. For this purpose, this study simulated and evaluated the changes in the hydrological cycle for the past 50 years (1955-2010) in East Asia including China, Japan and South Korea. In particular, this study used the land cover maps which can properly reflect the vegetation condition for each simulation period. As results, the mean runoff ratio of China was estimated to be 47.0% over the entiree period, 62.7% in Japan and 49.4% in South Korea. The mean soil moisture of China was estimated to be 22.2%, 35.6% in Japan and 23.9% in South Korea. Finally, the mean evapotranspiration rate was estimated to be 52.7% in China, 37.3% in Japan and 50.4% in South Korea. Especially, in China, the hydrological cycle was found to be changed very much for the entire simulation period. However, in Japan, the hydrological cycle was found to be very stable for the entire simulation period. The hydrological cycle was also found to become stable mainly due to the stabilization of the vegetation.

Application of Proxy-basin Differential Split-Sampling and Blind-Validation Tests for Evaluating Hydrological Impact of Climate Change Using SWAT (SWAT을 이용한 기후변화의 수문학적 영향평가를 위한 Proxy-basin Differential Split-Sampling 및 Blind-Validation 테스트 적용)

  • Son, Kyong-Ho;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.969-982
    • /
    • 2008
  • As hydrological models have been progressively developed, they are recognized as appropriate tools to manage water resources. Especially, the need to evaluate the effects of landuse and climate change on hydrological phenomena has been increased, which requires powerful validation methods for the hydrological models to be employed. As measured streamflow data at many locations may not be available, or include significant errors in application of hydrological models, streamflow data simulated by models only might be used to conduct hydrological analysis. In many cases, reducing errors in model simulations requires a powerful model validation method. In this research, we demonstrated a validation methodology of SWAT model using observed flow in two basins with different physical characteristics. First, we selected two basins, Gap-cheon basin and Yongdam basin located in the Guem River Basin, showing different hydrological characteristics. Next, the methodology developed to estimate parameter values for the Gap-cheon basin was applied for estimating those for the Yongdam basin without calibration a priori, and sought for validation of the SWAT. Application result with SWAT for Yongdam basin showed $R_{eff}$ ranging from 0.49 to 0.85, and $R^{2}$ from 0.49 to 0.84. As well, comparison of predicted flow and measured flow in each subbasin showed reasonable agreement. Furthermore, the model reproduced the whole trends of measured total flow and low flow, though peak flows were rather underestimated. The results of this study suggest that SWAT can be applied for predicting effects of future climate and landuse changes on flow variability in river basins. However, additional studies are recommended to further verify the validity of the mixed method in other river basins.