• Title/Summary/Keyword: Hydrological Environment

Search Result 404, Processing Time 0.044 seconds

Operational Water Quality Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 수질 예측)

  • Shin, Chang Min;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.570-581
    • /
    • 2016
  • A watershed model was constructed using the Hydrological Simulation Program Fortran to predict the water quality, especially chlorophyll-a concentraion, at major tributaries of the Nakdong River basin, Korea. The BOD export loads for each land use in HSPF model were estimated at $1.47{\sim}8.64kg/km^2/day$; these values were similar to the domestic monitoring export loads. The T-N and T-P export loads were estimated at $0.618{\sim}3.942kg/km^2/day$ and $0.047{\sim}0.246kg/km^2/day$, slightly less than the domestic monitoring data but within the range of foreign literature values. The model was calibrated at major tributaries for a three-year period (2008 to 2010). The deviation values ranged from -31.5~1.6% of chlorophyll-a, -24.0~2.2% of T-N, and -5.7~34.8% of T-P. The root mean square error (RMSE) ranged from 4.3~44.4 ug/L for chlorophyll-a, -0.6~1.5 mg/L for T-N, and 0.04~0.18 mg/L for T-P, which indicates good calibration results. The operational water quality forecasting results for chlorophyll-a presented in this study were in good agreement with measured data and had an accuracy similar with model calibration results.

Quantitative Assessment of Nonpoint Source Load in Nakdong River Basin

  • Kwon, Heon-Gak;Lee, Jae-Woon;Yi, Youn-Jeong;Cheon, Se-Uk
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.7-23
    • /
    • 2014
  • This study estimates unit for the nonpoint source(NPS), classified according to the existing Level-1(large scale) land cover map, by monitoring the measurement results from each Level-2(medium scale) land cover map, and verifies the applicability by comparison with previously calculated units using the Level-1 land cover map. The NPS pollutant loading for a basin is evaluated by applying the NPS pollutant unit to Dongcheon basin using the Level-2 land cover map. In addition, the BASINS/HSPF(Better Assessment Science Integrating point & Non-point Sources/Hydrological Simulation Program-Fortran) model is used to evaluate the reliability of the NPS pollutant loading computation by comparing the loading during precipitation in the Dongcheon basin. The NPS pollutant unit for the Level-2 land cover map is computed based on precipitation measured by the Sangju observatory in the Nakdong River basin. Finally, the feasibility of the NPS pollutant loading computation using a BASINS/HSPF model is evaluated by comparing and analyzing the NPS pollutant loading when estimated unit using the Level-2 land cover map and simulated using the BASINS/HSPF models.

Estimation of Delivery Ratio Based on BASINS/HSPF Model for Total Maximum Daily Load (BASINS/HSPF 모형을 이용한 수질오염총량관리 유달율 산정방법 연구)

  • Park, Ju-Hyun;Hwang, Hasun;Rhew, Doughee;Kwon, Oh-Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.833-842
    • /
    • 2012
  • In this study Window interface to Hydrological Simulation Program-FORTRAN (HSPF) developed by the United States Environmental Protection Agency (EPA) was applied to the upstream of Namgang watershed to estimate its applicability for estimating Delivery Ratio (DR) of water pollutants for Total Maximum Daily Load (TMDL). BASINS/HSPF which is selected in this study, is found to be appropriate for simulation of daily flow and water quality in target basins. DR was estimated utilizing discharge loads of unobserved sub-basin and delivery load of unobserved locations obtained not by actual evaluation but by simulation through validation and verification. Annual average DR of BOD, TN and TP were 0.97 ~ 1.50, 2.23 ~ 3.21, and 0.81 ~ 1.09 respectively. Net DR of dependent basins excluding influence of upstream basin was 1.50 ~ 1.70, 0.55 ~ 0.69, and 0.24 ~ 0.31, all of which are lower than those of independent basins area. Utilizing the model selected by this research, DR and Net DR of unobserved basins will be estimated, which will help determine priorities in management of basin areas.

Water Quality Forecasting of the River Applying Ensemble Streamflow Prediction (앙상블 유출 예측기법을 적용한 하천 수질 예측)

  • Ahn, Jung Min;Ryoo, Kyong Sik;Lyu, Siwan;Lee, Sang Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.359-366
    • /
    • 2012
  • Accurate predictions about the water quality of a river have great importance in identifying in-stream flow and water supply requirements and solving relevant environmental problems. In this study, the effect of water release from upstream dam on the downstream water quality has been investigated by applying a hydological model combined with QUAL2E to Geum River basin. The ESP (Ensemble Stream Prediction) method, which has been validated and verified by lots of researchers, was used to predict reservoir and tributary inflow. The input parameters for a combined model to predict both hydrological characteristics and water quality were identified and optimized. In order to verify the model performance, the simulated result at Gongju station, located at the downstream from Daecheong Dam, has been compared with measured data in 2008. As a result, it was found that the proposed model simulates well the values of BOD, T-N, and T-P with an acceptable reliability.

Applicability Analysis of Chemical Fate Model Considering Climate Change Impact in Municipal and Industrial Areas in Korea (기후변화를 고려한 화학물질거동모형의 도시·산단지역 적용성 연구)

  • Ryu, Sun-Nyeo;Lee, Woo-Kyun
    • Journal of Climate Change Research
    • /
    • v.6 no.2
    • /
    • pp.121-131
    • /
    • 2015
  • As the temperature has changed by climate change, changes in its own characteristic values of the chemical substance or the movement and distribution of chemicals take place in accordance with the changes of hydrological and meteorological phenomena. Depending on the impact of climate change on the chemical behavior, it is necessary to understand and predict quantitative changes in the dynamics of the environment of pollutants due to climate change in order to predict in advance the occurrence of environmental disasters, and minimize the impact on the life and the environment after the incident. In this study, we have analysed and compared chemical fate models validated by previous studies in terms of model configuration, application size and input/output factors. The potential models applicable to municipal and industrial areas were selected on the basis of characteristic of each model, availability of input parameters and consideration for climate change, identified the problems, and then presented an approach to improve applicability.

Review of Features and Applications of Watershed-scale Modeling, and Improvement Strategies of it in South-Korea (유역 모델 특성 및 국내 적용 현황과 발전 방향에 대한 검토)

  • Park, Youn Shik;Ryu, Jichul;Kim, Jonggun;Kum, Donghyuk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.592-610
    • /
    • 2020
  • In South Korea, the concept of water environment was expanded to include aquatic ecosystems with the Integrated Water Management implementation. Watershed-scale modeling is typically performed for hydrologic component analysis, however, there is a need to expand to include ecosystem variability such that the modeling corresponds to the social and political issues around the water environment. For this to be viable, the modeling must account for several distinct features in South Korean watersheds. The modeling must provide reasonable estimations for peak flow rate and apply to paddy areas as they represent 11% of land use area and greatly influence groundwater levels during irrigation. These facts indicate that the modeling time intervals should be sub-daily and the hydrologic model must have sufficient power to process surface flow, subsurface flow, and baseflow. Thus, the features required for watershed-scale modeling are suggested in this study by way of review of frequently used hydrologic models including: Agricultural Policy/Environmental eXtender(APEX), Catchment hydrologic cycle analysis tool(CAT), Hydrological Simulation Program-FORTRAN(HSPF), Spatio-Temporal River-basin Ecohydrology Analysis Model(STREAM), and Soil and Water Assessment Tool(SWAT).

Operational Water Temperature Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 실시간 수온 예측)

  • Shin, Chang Min;Na, Eun Hye;Kim, Duck Gil;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.673-682
    • /
    • 2014
  • A watershed model was constructed using Hydrological Simulation Program Fortran to predict the water temperature at major tributaries of Nakdong River basin, Korea. Water temperature is one of the most fundamental indices used to determine the nature of an aquatic environment. Most processes of an aquatic environment such as saturation level of dissolved oxygen, the decay rate of organic matter, the growth rate of phytoplankton and zooplankton are affected by temperature. The heat flux to major reservoirs and tributaries was analyzed to simulate water temperature accurately using HSPF model. The annual mean heat flux of solar radiation was estimated to $150{\sim}165W/m^2$, longwave radiation to $-48{\sim}-113W/m^2$, evaporative heat loss to $-39{\sim}-115W/m^2$, sensible heat flux to $-13{\sim}-22W/m^2$, precipitation heat flux to $2{\sim}4W/m^2$, bed heat flux to $-24{\sim}22W/m^2$ respectively. The model was calibrated at major reservoir and tributaries for a three-year period (2008 to 2010). The deviation values (Dv) of water temperature ranged from -6.0 to 3.7%, Nash-Sutcliffe efficiency(NSE) of 0.88 to 0.95, root mean square error(RMSE) of $1.7{\sim}2.8^{\circ}C$. The operational water temperature forecasting results presented in this study were in good agreement with measured data and had a similar accuracy with model calibration results.

A Study on the Operational Forecasting of the Nakdong River Flow with a Combined Watershed and Waterbody Model (실시간 낙동강 흐름 예측을 위한 유역 및 수체모델 결합 적용 연구)

  • Na, Eun Hye;Shin, Chang Min;Park, Lan Joo;Kim, Duck Gil;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.16-24
    • /
    • 2014
  • A combined watershed and receiving waterbody model was developed for operational water flow forecasting of the Nakdong river. The Hydrological Simulation Program Fortran (HSPF) was used for simulating the flow rates at major tributaries. To simulate the flow dynamics in the main stream, a three-dimensional hydrodynamic model, EFDC was used with the inputs derived from the HSPF simulation. The combined models were calibrated and verified using the data measured under different hydrometeological and hydraulic conditions. The model results were generally in good agreement with the field measurements in both calibration and verification. The 7-days forecasting performance of water flows in the Nakdong river was satisfying compared with model calibration results. The forecasting results suggested that the water flow forecasting errors were primarily attributed to the uncertainties of the models, numerical weather prediction, and water release at the hydraulic structures such as upstream dams and weirs. From the results, it is concluded that the combined watershed-waterbody model could successfully simulate the water flows in the Nakdong river. Also, it is suggested that integrating real-time data and information of dam/weir operation plans into model simulation would be essential to improve forecasting reliability.

A Study on Domestic Applicability for the Korean Cosmic-Ray Soil Moisture Observing System (한국형 코즈믹 레이 토양수분 관측 시스템을 위한 국내 적용성 연구)

  • Jaehwan Jeong;Seongkeun Cho;Seulchan Lee;Kiyoung Kim;Yongjun Lee;Chung Dae Lee;Sinjae Lee;Minha Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.233-246
    • /
    • 2023
  • In terms of understanding the water cycle and efficient water resource management, the importance of soil moisture has been highlighted. However, in Korea, the lack of qualified in-situ soil moisture data results in very limited utility. Even if satellite-based data are applied, the absence of ground reference data makes objective evaluation and correction difficult. The cosmic-ray neutron probe (CRNP) can play a key role in producing data for satellite data calibration. The installation of CRNP is non-invasive, minimizing damage to the soil and vegetation environment, and has the advantage of having a spatial representative for the intermediate scale. These characteristics are advantageous to establish an observation network in Korea which has lots of mountainous areas with dense vegetation. Therefore, this study was conducted to evaluate the applicability of the CRNP soil moisture observatory in Korea as part of the establishment of a Korean cOsmic-ray Soil Moisture Observing System (KOSMOS). The CRNP observation station was installed with the Gunup-ri observation station, considering the ease of securing power and installation sites and the efficient use of other hydro-meteorological factors. In order to evaluate the CRNP soil moisture data, 12 additional in-situ soil moisture sensors were installed, and spatial representativeness was evaluated through a temporal stability analysis. The neutrons generated by CRNP were found to be about 1,087 counts per hour on average, which was lower than that of the Solmacheon observation station, indicating that the Hongcheon observation station has a more humid environment. Soil moisture was estimated through neutron correction and early-stage calibration of the observed neutron data. The CRNP soil moisture data showed a high correlation with r=0.82 and high accuracy with root mean square error=0.02 m3/m3 in validation with in-situ data, even in a short calibration period. It is expected that higher quality soil moisture data production with greater accuracy will be possible after recalibration with the accumulation of annual data reflecting seasonal patterns. These results, together with previous studies that verified the excellence of CRNP soil moisture data, suggest that high-quality soil moisture data can be produced when constructing KOSMOS.

Spatial and Temporal Distribution of Zooplankton Communities in Lake Paldang (팔당호 동물플랑크톤 군집의 시공간적 분포)

  • Sim, Youn-Bo;Jeong, Hyun-Gi;Im, Jong-Kwon;Youn, Seok-Jea;Byun, Myeong-Seop;Yoo, Soon-Ju
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.287-298
    • /
    • 2018
  • The zooplankton community and environmental factor were investigated on a weekly basis from March to November 2015 in Lake Paldang, Korea. The seasonal succession of zooplankton community structure was influenced by hydraulic and hydrological factors such as inflow, outflow and rainfall. However, the hydraulic retention time in 2015 (16.3 day) was affected by the periods of water shortage that had continued since 2014 and increased substantially compared to 2013 (7.3 day). Therefore, the inflow and outflow discharge were decreased, and the water quality (COD, BOD, TOC, TP, Chl-a) of Lake Paldang (St.1) was the same characteristics as the river type Bukhan river (St.3), compared with the lake type Namhan river (St.2) and Gyeongan stream (St.4). Zooplankton community dominated by rotifers (Keratella cochlearis, Synchaeta oblonga) in spring (March to May). However, Copepod (Nauplius) and Cladoceran (Bosmina longirostris) dominated in St.4. In summer (June to August), there was a few strong rainfall event and the highest number of individuals dominated by Keratella cochlearis (Rotifera) and Difflugia corona (Protozoa) were shown during the study period. In autumn (October to November), the water temperature was decreased with decrease in the total number of individuals showing Nauplius (Copepoda) as the dominant species. As a result of the statistical analysis about zooplankton variation in environmental factors, the continuous periods of water shortage increased the hydraulic retention time and showed different characteristic for each site. St.1, St.3 and St.2, St.4 are shown in the same group (p<0.05), showing the each characteristics of river type and lake type. Therefore, the water quality of catchment area and distribution of zooplankton community would be attributed to hydraulic and hydrological factors.