• Title/Summary/Keyword: Hydrologic effect

Search Result 135, Processing Time 0.024 seconds

Assessment of Rainfall-Sediment Yield-Runoff Prediction Uncertainty Using a Multi-objective Optimization Method (다중최적화기법을 이용한 강우-유사-유출 예측 불확실성 평가)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jung, Kwan-Sue;Cho, Bok-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1011-1027
    • /
    • 2010
  • In hydrologic modeling, prediction uncertainty generally stems from various uncertainty sources associated with model structure, data, and parameters, etc. This study aims to assess the parameter uncertainty effect on hydrologic prediction results. For this objective, a distributed rainfall-sediment yield-runoff model, which consists of rainfall-runoff module for simulation of surface and subsurface flows and sediment yield module based on unit stream power theory, was applied to the mesoscale mountainous area (Cheoncheon catchment; 289.9 $km^2$). For parameter uncertainty evaluation, the model was calibrated by a multi-objective optimization algorithm (MOSCEM) with two different objective functions (RMSE and HMLE) and Pareto optimal solutions of each case were then estimated. In Case I, the rainfall-runoff module was calibrated to investigate the effect of parameter uncertainty on hydrograph reproduction whereas in Case II, sediment yield module was calibrated to show the propagation of parameter uncertainty into sedigraph estimation. Additionally, in Case III, all parameters of both modules were simultaneously calibrated in order to take account of prediction uncertainty in rainfall-sediment yield-runoff modeling. The results showed that hydrograph prediction uncertainty of Case I was observed over the low-flow periods while the sedigraph of high-flow periods was sensitive to uncertainty of the sediment yield module parameters in Case II. In Case III, prediction uncertainty ranges of both hydrograph and sedigraph were larger than the other cases. Furthermore, prediction uncertainty in terms of spatial distribution of erosion and deposition drastically varied with the applied model parameters for all cases.

Effect Analysis of Precipitation Events According to an Urbanization (도시화가 강수사상에 미치는 영향 분석)

  • Oh, Tae Suk;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.413-427
    • /
    • 2010
  • Urbanization means the sudden increment of a population and the industrialization. The hydrologic water cycle causes many changes due to urbanization. Therefore, the affects that urbanization influences on the precipitation events were analyzed. But the precipitation events are very much influenced many meteorological and climatologically indices besides the effect of an urbanization. So, an analysis was performed by using precipitation data observed in many spots of the Korean peninsula. The analysis data are annual precipitation, the duration 1 daily maximum amount of precipitation, the rainy days, and 10 mm over the rainy days, and 80 mm. seasonal precipitation and seasonal rainy days. The analytical method classified 4 clusters in which the precipitation characteristic is similar through the cluster analysis. It compared and analyzed precipitation events of the urban and rural stations. Moreover, the representative rainfall stations were selected and the urban stations and rural stations were compared. In the analyzed result, the increment of the rainy days was conspicuous over 80mm in which it can cause the heavy rainfall. By using time precipitation data, the design precipitation was calculated. Rainfall events over probability precipitation on duration and return period were analyzed. The times in which it exceeds the probability precipitation in which the urban area is used for the hydrologic structure design in comparison with the rural area more was very much exposed to increase.

Assessing the Effect of Water and Heat Cycle of Green Roof System using Distributed Hydrological Model in Urban Area (분포형 수문모형을 이용한 도시지역 옥상녹화에 따른 물 및 열순환 영향 평가)

  • Jang, Cheol Hee;Kim, Hyeon Jun;Kim, Yeon Mee;Nam, Mi A
    • KIEAE Journal
    • /
    • v.13 no.4
    • /
    • pp.33-41
    • /
    • 2013
  • The impervious area on the surface of urban area has been increased as buildings and artificial land cover have continually been increased. Urban development has gradually decreased the green zone in downtown and alienated the city from the natural environment on outskirt area devastating the natural ecosystem. There arise the environmental problems to urban area including urban heat island phenomenon, urban flood, air pollution and urban desertification. As one of urban plans to solve such problems, green roof system is attracting attentions. The purpose of this study was to investigate flood discharge and heat reduction effect according to the green roof system and to quantify effect by analyzing through simulation water and heat cycle before and after green roof system. For the analysis, Distributed hydrologic model, WEP (Water and Energy transfer Processes) and WEP+ model were used. WEP was developed by Dr. Jia, the Public Works Research Institute in Japan (Jia et al., 2005), which can simulate water and heat cycle of an urban area with complex land uses including calculation of spatial and temporal distributions of water and heat cycle components. The WEP+ is a visualization and analysis system for the WEP model developed by Korea Institute of Construction Technology (KICT).

Use of Groundwater recharge as a Variable for Monthly Streamflow Prediction (월 유출량 예측 변수로서 지하수 함양량의 이용)

  • Lee, Dong-Ryul;Yun, Yong-Nam;An, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.3
    • /
    • pp.275-285
    • /
    • 2001
  • Since the majority of streamflow during dry periods is provided by groundwater storage, the streamflow depends on a basin moisture state recharged from rainfall during wet periods. This hydrologic characteristics dives good condition to predict long-term streamflow if the basin state like groundwater recharge is known in advance. The objective of this study is to examine groundwater recharge effect to monthly streamflow, and to attempt monthly streamflow prediction using estimated groundwater recharge. The ground water recharge is used as an independent variable with streamflow and precipitation to construct multiple regression models for the prediction. Correlation analysis was performed to assess the effect of groundwater carry-over to streamflow and to establish the associations among independent variables. The predicted streamflow shows that the multiple regression model involved groundwater recharge gives improved results comparing to the model only using streamflow and precipitation as independent variables. In addition, this paper shows that the prediction model with the effect of groundwater carry-over taken into account can be developed using only precipitation.

  • PDF

Soil Related Parameters Assessment Comparing Runoff Analysis using Harmonized World Soil Database (HWSD) and Detailed Soil Map (HWSD와 정밀토양도를 이용한 유출해석시 토양 매개변수 특성 비교 평가)

  • Choi, Yun Seok;Jung, Young Hun;Kim, Joo Hun;Kim, Kyung-Tak
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.57-66
    • /
    • 2016
  • Harmonized World Soil Database (HWSD) including the global soil information has been implemented to the runoff analysis in many watersheds of the world. However, its accuracy can be a critical issue in the modeling because of the limitation the low resolution reflecting the physical properties of soil in a watershed. Accordingly, this study attempted to assess the effect of HWSD in modeling by comparing parameters of the rainfall-runoff model using HWSD with the detailed soil map. For this, Grid based Rainfall-runoff Model (GRM) was employed in the Hyangseok watershed. The results showed that both of two soil maps in the rainfall-runoff model are able to well capture the observed runoff. However, compared with the detailed soil map, HWSD produced more uncertainty in the GRM parameters related to soil depth and hydraulic conductivity during the calibrations than the detailed soil map. Therefore, the uncertainty from the limited information on soil texture in HWSD should be considered for better calibration of a rainfall-runoff model.

An Analysis on Effect of Hydrologic Factors for Estimation of Critical Storm Duration (설계강우의 임계지속기간 산정을 위한 수문요소의 영향분석)

  • Park, Sang-Woo;Jun, Byung-Ho;Lee, Sin-Jae;Park, Yang-Rae;Kim, Myung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.571-577
    • /
    • 2005
  • 최근 일련의 기상이변현상은 과거의 기상현상과 달리 국지성 호우 발생과 강우량의 증가현상으로 나타나고 있으며, 이러한 집중호우로 인해 발생하는 홍수규모는 기존의 수공구조물들을 위협할 수준에까지 이르러 기존 수공구조물의 안전성에 대한 재검토 필요성과 신규 구조물에 대한 안전성 확보대책이 강구되고 있다. 이에 따라 수문관련의 실무에서는 설계홍수량의 산정시 설계강우에 대한 임계지속기간의 개념이 적용되고 있으나, 아직까지 설계지침에는 이에 대한 명확한 기준이 구체적으로 제시되어 있지 못한 실정이다. 따라서 본 연구에서는 수공구조물의 설계에 필요한 임계지속기간의 결정에 도움을 주고자 설계홍수량 산정시 설계 강우로부터 홍수량을 산정하기 위한 일련의 과정에서 이용되는 유역 및 기상 특성인자 등의 제반 수문요소에 따른 임계지속기간의 변동양상을 파악하고, 임계지속기간과 재현기간, 유역특성인자, 단위도 단위시간과의 관계 및 임계지속기간에 대한 강우지속기간과 첨두홍수량의 변화 등을 분석하여 설계강우의 임계지속기간 산정을 위한 기초연구자료를 제시하고자 하였다.

  • PDF

Pollutant Loading Estimates from Watershed by Rating Curve Method and SWMM

  • Jeon, Ji-Hong;Yoon, Chun-Gyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.419-425
    • /
    • 2000
  • Rating curve method and SWMM (Storm Water Management Model) were applied to estimate pollutant loading from Hwa-Ong watershed in Kyunggi-Do. Rating curves were derived from sampling sites and applied to the whole watershed. SWMM version 4.4 was calibrated by field data of sampling sites and applied to the whole watershed. The pollutant loading estimated by rating curve was slightly higher than the one by SWMM, but the difference was not significant considering diffuse pollution characteristics of wide variation. Land use effect of the subcatchments could not be incorporated logically in rating curve method and difficulty in extrapolation was experienced, therefore, the estimate by rating curve method was thought to be less confident. SWMM was satisfactory in estimation of pollution loading, and its great flexibility worked well to describe complex nonurban land uses. Neither of them could exactly describe complex natural phenomena, but SWMM was preferred in this study due to its flexibility and logical hydrologic processes including land use effects. Use of reasonable watershed model rather than rating curve method for watershed pollutant loading estimate can be more practical and is recommended.

  • PDF

Effect of the Simplification and Composition in Sewer Networks (우수관망의 단순화와 관로배치의 영향분석)

  • 전병호;이종태;윤재영
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.139-146
    • /
    • 1994
  • Simplified sewer networks have been used to simulate runoff hydrographs for urban watersheds since configurations of sewer networks in urban area are commonly so complex that it is too cumbersome to simulate them as what they are. If they were to be simulated without any simplification, it is not likely that satisfactory results are obtained due to accumulation of numerous little errors. Even for the well-known models widely used in everyday practicesit is not appropriate to simulate everything in the watershed as what they are. In resolving these problems, it is common practice to simplify network configurations so as to be fitted to the models for runoff hydrograph simulation. In case of netwrok simplication, hydraulic and hydrologic characteristics of the watersheds should be carefully taken into consideration to derive meaningful results. On the bases of these considerations, this study analyzes simulation outputs using simplified networks and compares them, as well as inestigates the methods to make hydraulically sound simplification of sewer networks.

  • PDF

An Analysis of the Effect of Climate Change on Nakdong River Flow Condition using CGCM ' s Future Climate Information (CGCM의 미래 기후 정보를 이용한 기후변화가 낙동강 유역 유황에 미치는 영향분석)

  • Keem, Munsung;Ko, Ikwhan;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.863-871
    • /
    • 2009
  • For the assessment of climate change impacts on river flow condition, CGCM 3.1 T63 is selected as future climate information. The projections come from CGCM used to simulate the GHG emission scenario known as A2. Air temperature and precipitation information from the GCM simulations are converted to regional scale data using the statistical downscaling method known as MSPG. Downscaled climate data from GCM are then used as the input data for the modified TANK model to generate regional runoff estimates for 44 river locations in Nakdong river basin. Climate change is expected to reduce the reliability of water supplies in the period of 2021~2030. In the period of 2051~2060, stream flow is expected to be reduced in spring season and increased in summer season. However, it should be noted that there are a lot of uncertainties in such multiple-step analysis used to convert climate information from GCM-based future climate projections into hydrologic information.

Effect of Climate Change on Water Quality in Seonakdong River Experimental Catchment (기후변화에 따른 서낙동강 시험유역에서의 수질영향 분석)

  • Kang, Ji Yoon;Kim, Jung Min;Kim, Young Do;Kang, Boo Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.197-206
    • /
    • 2013
  • Recently, climate change causes climatic anomaly such as global warming, the typhoon and severe rain storm etc. and it brings damage frequently. Climate change and global warming are prevalent all over the world in this century and many researchers including hydrologists have studied on the climate change. In this study, Seonakdong river watershed in the Nakdong river basin was selected as a study area. Real-time monitoring system was used to draw the rating curves, which has 0.78 to 0.96 of $R^2$. To predict runoff change in Seonakdong river watershed caused by climate change, the change in hydrologic runoff were predicted using the watershed model, SWAT. As a result, the runoff from the Seonakdong river watershed was increased by up to 45 % in summer. Because of the non-point sources from the farmland and the urban area, the water quality will be affected by the climate change. In this study, the operating plan of the water gates in Seonakdong river will be suggested by considering the characteristics of the watershed runoff due to the climate change. The optimal watergate opening plan will solve the water pollution problems in the reservoir-like river.