• Title/Summary/Keyword: Hydrologic analysis

Search Result 694, Processing Time 0.023 seconds

Review of Features and Applications of Watershed-scale Modeling, and Improvement Strategies of it in South-Korea (유역 모델 특성 및 국내 적용 현황과 발전 방향에 대한 검토)

  • Park, Youn Shik;Ryu, Jichul;Kim, Jonggun;Kum, Donghyuk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.592-610
    • /
    • 2020
  • In South Korea, the concept of water environment was expanded to include aquatic ecosystems with the Integrated Water Management implementation. Watershed-scale modeling is typically performed for hydrologic component analysis, however, there is a need to expand to include ecosystem variability such that the modeling corresponds to the social and political issues around the water environment. For this to be viable, the modeling must account for several distinct features in South Korean watersheds. The modeling must provide reasonable estimations for peak flow rate and apply to paddy areas as they represent 11% of land use area and greatly influence groundwater levels during irrigation. These facts indicate that the modeling time intervals should be sub-daily and the hydrologic model must have sufficient power to process surface flow, subsurface flow, and baseflow. Thus, the features required for watershed-scale modeling are suggested in this study by way of review of frequently used hydrologic models including: Agricultural Policy/Environmental eXtender(APEX), Catchment hydrologic cycle analysis tool(CAT), Hydrological Simulation Program-FORTRAN(HSPF), Spatio-Temporal River-basin Ecohydrology Analysis Model(STREAM), and Soil and Water Assessment Tool(SWAT).

Stability Analysis of Embankment Overtopping by Initial Fluctuating Water Level (초기 변동수위를 고려한 제방 월류에 따른 안정성 분석)

  • Kim, Jin-Young;Kim, Tae-Heon;Kim, You-Seong;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.51-62
    • /
    • 2015
  • It is not possible to provide resonable evidence for embankment (or dam) overtopping in geotechnical engineering, and conventional analysis by hydrologic design has not provided the evidence for the overflow. However, hydrologic design analysis using Copula function demonstrates the possibility that dam overflow occurs when estimating rainfall probability with rainfall data for 40 years based on fluctuating water level of a dam. Hydrologic dam risk analysis depends on complex hydrologic analyses in that probabilistic relationship needs to be established to quantify various uncertainties associated with modeling process and inputs. The systematic approaches to uncertainty analysis for hydrologic risk analysis have not been addressed yet. In this paper, the initial level of a dam for stability of a dam is generally determined by normal pool level or limiting the level of the flood, but overflow of probability and instability of a dam depend on the sensitivity analysis of the initial level of a dam. In order to estimate the initial level, Copula function and HEC-5 rainfall-runoff model are used to estimate posterior distributions of the model parameters. For geotechnical engineering, slope stability analysis was performed to investigate the difference between rapid drawdown and overtopping of a dam. As a result, the slope instability in overtopping of a dam was more dangerous than that of rapid drawdown condition.

An Analysis of Temporal Characteristic Change for Various Hydrologic Weather Parameters (I) - On the Basic Statistic, Trend - (각종 수문기상인자의 경년별 특성변화 분석(I) - 기본통계량, 경향성을 중심으로 -)

  • Lee, Jae-Joon;Jang, Joo-Young;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.409-419
    • /
    • 2010
  • In this study, for the purpose of analyzing the characteristics of Korean hydrologic weather parameters, 9 hydrologic weather parameters data such as annual precipitation, annual rainy days, annual average relative humidity, annual average temperature, annual duration of sunshine, annual evaporation, annual duration of precipitation, annual snowy days and annual new snowy days are collected from 63 domestic meteorological stations that has the hydrologic weather parameters records more than 30 years. And the basic characteristics of hydrologic weather parameters through basic statistics, moving average and linear regression analysis are perceived. Also trend using the statistical methods like Hotelling-Pabst test and Mann-Kendall test about hydrologic weather parameters is analyzed. Through results of basic analysis, moving average and linear regression analysis it is shown that precipitation is concentrated in summer and deviation of precipitation for each season showed significant difference in accordance with Korean climate characteristics, besides the increase in annual precipitation and annual average temperature, annual average relative humidity and annual duration of sunshine reduction and annual rainy days is said to increase or decrease. The results of statistical analysis of trend are summarized as trend commonly appeared in annual average relative humidity and annual average temperature. and annual precipitation, annual rainy days and annual duration of sunshine showed different results according to area.

Development of a Hydraulic and Hydrologic Analysis Model for the Recovery of Ecological Connectivity at an Isolated Space of a Stream (하천의 차단된 공간에서 생태적 연결성 회복을 위한 수리수문학적 분석모형 개발)

  • Lee, Jin Woo;Chegal, Sun dong;Kim, Chang Wan
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • River restoration has recently progressed in consideration of ecological functions along with flood controls and conservation. For river restorations that consider ecological health and diversity, it is important to contemplate the recovery of hydraulic and hydrologic connectivity in isolated spaces by longitudinal structures. In this study, as a first step for the provision of hydraulic and hydrologic data, which is necessary for the ecological connection analysis in isolated spaces, we developed a one-dimensional numerical model for rainfall runoff and channel routing and applied it to the Cheongmi watershed. The developed numerical model can simulate hydraulic and hydrologic analysis at the same time using the rainfall data. Numerical results were compared with observed data and other numerical results. As a result, a very reasonable agreement is observed. The results of this study will be improved so that the long-term hydrologic and hydraulic analysis is possible to predict ecological change.

A Study of the Forecasting of Hydrologic Time Series Using Singular Spectrum Analysis (Singular Spectrum Analysis를 이용한 수문 시계열 예측에 관한 연구)

  • Kwon, Hyun-Han;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.131-137
    • /
    • 2006
  • We have investigated the properties of the Singular Spectrum Analysis (SSA) coupled with the Linear Recurrent Formula which made it possible to complement the parametric time series model. The SSA has been applied to extract the underlying properties of the principal component of hydrologic time series, which can often be identified as trends, seasonalities and other oscillatory series, or noise components. Generally, the prediction by the SSA method can be applied to hydrologic time series governed (may be approximately) by the linear recurrent formulae. This study has examined the forecasting ability of the SSA-LRF model. These methods were applied to monthly discharge and water surface level data. These models indicated that two of the time series have good abilities of forecasting, particularly showing promising results during the period of one year. Thus, the method presented in this study suggests a competitive methodology for the forecast of hydrologic time series.

An Analysis of Temporal Characteristic Change for Various Hydrologic Weather Parameters (II ) - On the Variability, Periodicity - (각종 수문기상인자의 경년별 특성변화 분석 (II) - 변동성, 주기성을 중심으로 -)

  • Lee, Jae-Joon;Jang, Joo-Young;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.5
    • /
    • pp.483-493
    • /
    • 2010
  • In this study, for the purpose of analyzing variability and periodicity of Korean hydrologic weather parameters, 5 hydrologic weather parameters data such as annual precipitation, annual rainy days, annual average temperature, annual average relative humidity, annual duration of sunshine are collected from 63 domestic meteorological stations that has the hydrologic weather parameters records more than 30 years. And in this study the variability and periodicity using the statistical methods like Wald-Wolfowitz test, Mann-Whitney test, and Wavelet Transform about hydrologic weather parameters is analyzed. The results of statistical analysis of variability and periodicity can be summarized as follows: 1) Variability commonly appeared in annual average temperature and annual average relative humidity. 2) Annual precipitation, annual rainy days and annual duration of sunshine showed different results according to area. 3) Periodicity appeared in annual precipitation and annual rainy days but did not appeard in annual average temperature, annual average relative humidity and annual duration of sunshine.

Sensitivity Analysis of the Runoff Model Parameter for the Optimal Design of Hydrologic Structures (수공구조물의 적정설계를 위한 유출모형 매개변수의 민감도 분석)

  • Lee, Jung-Hoon;Kim, Mun-Mo;Yeo, Woon-Kwang
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.755-758
    • /
    • 2008
  • Currently, the increased run-off and the shortened arrival time are one of the causes of the city environmental disasters in urbanization. Therefore, it is necessary to properly design the hydrologic structures, but it is very difficult to forecast the values necessary to design from the planning stage. Moreover, as the parameter is changed due to the urban development, it is difficult not only to analyze the run-off influences but also to find the related studies and literatures. The purpose of this study is to utilize the results as the important basic data of the hydrologic structures, its proper design and run-off influences through the sensibility analysis of the model parameter variables. In this study, the absolute and relative sensibility analysis method were used to find out the correlation through the sensibility analysis of the topology and hydrology parameters. Especially, in this study, the changes in the run-off amount and volume were calculated according to increase/decrease in CN, the coefficient of discharge, and the empirical formula is prepared and proposed through the regressive analysis among the parameters. In the meantime, the parameter sensibility analysis was performed through the simulation HEC-HMS that is used and available in Korea. From the results of this study, it was found that the run-off amount is increased about by 10% when the CN value is increased by 5% before and after the development through the HEC-HMS simulation and data analysis. As long as there will be additional data collection analysis and result verification, and continuous further studies to find out the parameters proper to the domestic circumstances, it is expected to considerably contribute to the proper design of the hydrologic structures with respect to the ungauged basin.

  • PDF

Analysis on Hydrologic Stability of Agricultural Reservoir Using Probable Maximum Flood (최대가능홍수량 적용에 따른 농업용 저수지의 수문학적 안정성 분석)

  • Kim, Sang-Woo;Maeng, Seung-Jin
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.28-34
    • /
    • 2010
  • This study re-exams hydrologic stability on spillway outlet capacity of agricultural reservoirs using hydrologic data with current rainfall condition instead of project hydrologic data applied at design on Backgok reservoir located in Chungbuk province. It is concluded that Backgok reservoir is not hydrologically stable and therefore structural measures including the extension of spillway and non structural measures should be taken. Continuous basic plan for river maintenance including additional bank reinforcement to bottom river shall be carried out. Due to high peak flood with more than 290% compared to 200 year frequency probability flood which was design standard of the past in view of the results of calculating PMF according to revised design standard for reservoirs, there could a problem for securing rationality in case of applying PMF with design flood. Therefore, hydrological stability, construction, and maintenance cost shall be synthetically studied and reasonal application shall be made if the decision is made on applying PMF with design flood.

  • PDF

Hydrologic Performance Characteristics of Small Hydro Power Resources for River Systems (수계별 소수력자원의 수문학적 성능특성)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.65-71
    • /
    • 2010
  • The hydrologic performance characteristics of small hydro power(SHP) sites located in four major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for SHP plants is established. Monthly inflow data measured at Andong dam for 32 years were analyzed. The predicted results from the developed models in this study showed that the data were in good agreement with measured results of long term inflow at Andong dam. The results from hydrologic performance analysis for SHP sites located on five major river systems based on the models developed in this study show that the specific design flowrate and specific output of SHP site have large difference between the river systems.

Concept of Trend Analysis of Hydrologic Extreme Variables and Nonstationary Frequency Analysis (극치수문자료의 경향성 분석 개념 및 비정상성 빈도해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.389-397
    • /
    • 2010
  • This study introduced a Bayesian based frequency analysis in which the statistical trend analysis for hydrologic extreme series is incorporated. The proposed model employed Gumbel extreme distribution to characterize extreme events and a fully coupled bayesian frequency model was finally utilized to estimate design rainfalls in Seoul. Posterior distributions of the model parameters in both Gumbel distribution and trend analysis were updated through Markov Chain Monte Carlo Simulation mainly utilizing Gibbs sampler. This study proposed a way to make use of nonstationary frequency model for dynamic risk analysis, and showed an increase of hydrologic risk with time varying probability density functions. The proposed study showed advantage in assessing statistical significance of parameters associated with trend analysis through statistical inference utilizing derived posterior distributions.