• 제목/요약/키워드: Hydrologic Simulation Model

검색결과 258건 처리시간 0.028초

CSOs를 고려한 도시유역의 수량 및 수질 분석을 위한 PCSWMM 모형의 적용 (Application of PCSWMM for the Analysis of Water Quantity and Quality Considering CSOs)

  • 홍원표;정은성;이준석;김경태;이길성
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.26-36
    • /
    • 2009
  • Combined sewer system (CSS) has been built in the most urban areas across the nation. During dry weather conditions, CSS works fine. But during heavy rain storms, combined sewage frequently overflows into the stream. This study simulated the hydrologic cycle and pollutant loads (BOD, SS, TN and TP) in the Mokgamcheon watershed considering combined sewer overflows (CSOs). PC storm water management model (PCSWMM) was used for continuous simulation and CSOs are considered using the flow divider. Sensitivity analysis, calibration and verification for water quantity and quality are carried out. To verify CSOs, field measurements of CSOs are compared with simulated results. As a result, 41.3% of precipitation flows into the stream directly and 1.1% of water supply flows into stream as CSOs. 6.5% of BOD total loads, 12.0% of SS, 13.6% of TP, and 29.2% of TN are from CSOs. This result will be effective to the integrated watershed management for sustainability.

치수능력 증대에 따른 저수지시스템 분석 (Analysis of Small reservoir system by Flood control ability augmentation)

  • 박기범;이순탁
    • 한국환경과학회지
    • /
    • 제14권11호
    • /
    • pp.995-1004
    • /
    • 2005
  • As a research establish reservoir safety operation for small dam systems. This study presents hydrologic analysis conducted in the Duckdong and Bomun dam watershed based on various rainfall data and increase inflow. Especially the Duckdong dam without flood control feature are widely exposed to the risk of flooding, thus it is constructed emergency gate at present. In this study reservoir routing program was simulation for basin runoff estimating using HEC-HMS model, the model simulation the reservoir condition of emergency Sate with and without. At the reservoir analysis results is the Duckdong dam average storage decrease $20\%$ with emergency gate than without emergency gate. Also, the Bomun dam is not affected by the Duckdong flood control augmentation.

수자원 수질 종합관리를 위한 ADSS 개발 전략 (Starategy for Advanced Decision Supprot System Development for Integrated Management of Water Resources and Quality)

  • 심순보
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 1992년도 수공학연구발표회논문집
    • /
    • pp.443-447
    • /
    • 1992
  • This study describes the strategy for advanced decision support system (ADSS) development for integrated management of water resources and quality in reservoir systems. The developed ADSS consists of database that contain hydrologic data, observed operational data, and data to support specific reservoir operations simulation, optimization models, and water quality models. The optimization model, mass balance simulation model and water quality models are used in a general prototype ADSS, menu driven controlling framework that assists the user to specify and evaluate the alternative operational scenarios at one time. These alternative scenarios are evaluated by the models and the results are compared through the use of a graphical based display system. This graphical based system uses an icon based schematic representation of the system to organize the presentation of the results. The ADSS includes the ability to use monthly or weekly time periods of analysis for the models and it can use monthly historical or stochastically generated inflows.

  • PDF

소유역 지표유출의 공간적 해석을 위한 지리정보시스템의 응용모형(I) -격자 물수지 모형의 개발 및 적용- (GIS Application Model for Spatial Simulation of Surface Runoff from a Small Watershed(I))

  • 김대식;정하우
    • 한국농공학회지
    • /
    • 제37권3_4호
    • /
    • pp.23-33
    • /
    • 1995
  • Geographic data which are difficult to handle by the characteristics of spatial variation and variety turned into a possibility to analyze with tlie computer-aided digital map and the use of Geographic Information System(GIS). The purpose of this study is to develop and apply a GIS application model (GISCELWAB) for the spatial simulation of surface runoff from a small watershed. This paper discribes the modeling procedure and the applicability of the cell water balance model (CELWAB) which calculates the water balance of a cell and simulates surface runoff of watershed simultaneously by the interaction of cells. The cell water balance model was developed to simulate the temporal and spatial storage depth and surface runoff of a watershed. The CELWAB model was constituted by Inflow-Outflow Calculator (JOC) which was developed to connect cell-to-cell transport mechanism automatically in this study. The CELWAB model requests detail data for each component of a cell hydrologic process. In this study, therefore, BANWOL watershed which have available field data was selected, and sensitivity for several model parameters was analyzed. The simulated results of surface runoff agreed well with the observed data for the rising phase of hydrograph except the recession phase. Each mean of relative errors for peak discharge and peak time was 0.21% and2.1 1% respectively. In sensitivity analysis of CELWAB , antecedent soil moisture condition(AMC) affected most largely the model.

  • PDF

논의 저류효과를 고려한 유역수문모델링 - HSPF Surface-Ftable의 적용 - (Watershed-scale Hydrologic Modeling Considering a Detention Effect of Rice Paddy Fields using HSPF Surface-Ftable)

  • 성충현;오찬성;황세운
    • 한국농공학회논문집
    • /
    • 제60권5호
    • /
    • pp.41-54
    • /
    • 2018
  • A method to account a detention in a rice paddy field in hydrologic modeling was tested at plot and watershed scales. Hydrologic Simulation Program - Fortran (HSPF) and its one of surface runoff modeling method, i.e Surface-Ftable, were used to simulate a inundated condition in a rice paddy culture for a study plot and basins in Saemangeum watershed. Surface-Ftable in HSPF defines surface runoff ratio with respect to surface water depth in a pervious land segment, which can be implemented to the feature of water management in a rice paddy field. A Surface-Ftable for paddy fields in Saemangeum watershed was developed based on the study paddy field monitoring data from 2013 to 2014, and was applied to Jeonju-chun and Jeongeup-chun basins which comprise 12% and 22% of paddy fields in the basins, respectively. Four gaging stations were used to calibrate and validate the watershed models for the period of 2009 and 2013. Model performed 7.13% and 9.68% in PBIAS, and 0.94 and 0.90 in monthly NSE during model calibrations at Jeonju and Jeongeup stations, respectively, while the models were validated its applicability at Hyoja and Gongpyung stations. The comparison of results with and without considering detention effect of paddy fields confirmed the validity of the Surface-Ftable method in modeling watersheds containing rice paddy fields.

Low Impact Urban Development For Climate Change and Natural Disaster Prevention

  • Lee, Jung-Min;Jin, Kyu-Nam;Sim, Young-Jong;Kim, Hyo-Jin
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.54-55
    • /
    • 2015
  • Increase of impervious areas due to expansion of housing area, commercial and business building of urban is resulting in property change of stormwater runoff. Also, rapid urbanization and heavy rain due to climate change lead to urban flood and debris flow damage. In 2010 and 2011, Seoul had experienced shocking flooding damages by heavy rain. All these have led to increased interest in applying LID and decentralized rainwater management as a means of urban hydrologic cycle restoration and Natural Disaster Prevention such as flooding and so on. Urban development is a cause of expansion of impervious area. It reduces infiltration of rain water and may increase runoff volume from storms. Low Impact Development (LID) methods is to mimic the predevelopment site hydrology by using site design techniques that store, infiltrate, evaporate, detain runoff, and reduction flooding. Use of these techniques helps to reduce off-site runoff and ensure adequate groundwater recharge. The contents of this paper include a hydrologic analysis on a site and an evaluation of flooding reduction effect of LID practice facilities planned on the site. The region of this Case study is LID Rainwater Management Demonstration District in A-new town and P-new town, Korea. LID Practice facilities were designed on the area of rainwater management demonstration district in new town. We performed analysis of reduction effect about flood discharge. SWMM5 has been developed as a model to analyze the hydrologic impacts of LID facilities. For this study, we used weather data for around 38 years from January 1973 to August 2014 collected from the new town City Observatory near the district. Using the weather data, we performed continuous simulation of urban runoff in order to analyze impacts on the Stream from the development of the district and the installation of LID facilities. This is a new approach to stormwater management system which is different from existing end-of-pipe type management system. We suggest that LID should be discussed as a efficient method of urban disasters and climate change control in future land use, sewer and stormwater management planning.

  • PDF

Effects of Digital Elevation Model in Water Quality Modeling using Geogrpahic Information System

  • Cho, Sung-Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.14-19
    • /
    • 2021
  • Aim of this research was to investigate the effects of Digital Elevation Model (DEM) for sensitivity analysis with two types of DEMs: 1 to 24,000 and 1 to 250,000 DEM. Another emphasis was given to the development of methodology for processing DEMs to create ArcGIS Pro and GRASS layers. This was done while developing water quality system modeling using DEMs which were used to model hydrological processes and SWAT model. Sensitivity analysis with DEMs resulted in different runoff volumes in the model simulation. Runoff volume was higher for the 1:24,000 DEM than 1:250,000 DEM, probably due to the finer resolution and slope which increased the estimated runoff from the watershed. Certainly the DEMs were factors in precision of the simulations and it was obvious during sensitivity analysis that DEMs had significant effect on runoff volumes. We suggest, however, that additional comparative research could be conducted involving more parameters such as soil and hydrologic parameters to provide insight into the overall physical system which the SWAT model represents.

SWAT-SWMM 연계모의를 이용한 서낙동강 오염부하량 산정 방안 연구 (A Study on Estimation of Pollutant Loads in Seonakdong River Using SWAT-SWMM Model)

  • 김정민;김영도
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.825-837
    • /
    • 2011
  • Seonakdong river consists of stagnant sections whose flowrate is controlled by the Daejeo and Noksan gates. As a result, there is not a minimum flow during normal times. The Daejeo and Noksan gates are located at the upstream head and the downstream end of Seonakdong river, respectively. Seonakdong river is an estuarine tributary of Nakdong river, which is a reservoir-like river used for agricultural irrigation, with the gate at the estuary of the river to prevent the intrusion of saline. Since the construction of the water gates, the water quality of the river has become degraded. This could also be due to the internal loading of pollutants, especially nutrients, from the sediments of the river because of the elongated detention time by the water gates. This study was thus conducted for the purpose of evaluating the current hydrologic-cycle system and providing measures for the rehabilitation of the hydrologic cycle. In this research, the daily outflow in Seonakdong River was simulated using the SWAT and SWMM models, and the water quality concentration including BOD, SS, TN, and TP were analyzed. The possibility of the application of SWAT-SWMM hybrid simulation was determined through the verification of both models. The error analysis shows that the results of both SWAT and SWAT-SWMM simulations make good agreements with those of field observations. For the single simulation results of SWAT, $R^{2}$ and NSE are 0.758, 0.511, respectively. For the hybrid simulation results of SWAT-SWMM, those are 0.880, 0.452, which means that the hybrid simulation can give more accurate results for the watershed where both the agricultural and urban areas exist.

농업유역의 일별 하천유출량 추정 (Prediction of Daily Streamflow on Agricultural Watersheds)

  • 임상준;박승우
    • 한국관개배수논문집
    • /
    • 제13권2호
    • /
    • pp.274-282
    • /
    • 2006
  • The objective of this study was to develop a hydrologic simulation model to predict daily streamflow from a small agricultural watershed considering irrigation return flow. The proposed IREFLOW(Irrigation REturn FLOW) model consists of hillslope runoff model, irrigation scheme drainage model, and irrigation return flow model, and simulates daily streamflow from an irrigated watershed. Two small watersheds were selected for monitoring of hydrological components and evaluating the model application. The relative error (RE) between observed and simulated daily streamflow were 2.9% and 6.4%, respectively, on two small agricultural watersheds (Baran and Gicheon) for the calibration period. The values of RE in daliy streamflow for the validation period were 6.0% for the Baran watershed, and 2.8% for the Gicheon watershed.

  • PDF

다중최적화기법을 이용한 분포형 수문모형의 최적화 (An Optimization of distributed Hydrologic Model using Multi-Objective Optimization Method)

  • 김정호;김태균
    • 한국습지학회지
    • /
    • 제21권1호
    • /
    • pp.1-8
    • /
    • 2019
  • 본 연구에서는 다중최적화기법을 이용하여 2가지 수문학적 과정을 통하여 유출량을 산정하는 수문모형의 모형 최적화를 시도하였으며, 수문모형으로는 융설량과 유출량을 동시에 산정할 수 있는 분포형 수문모형인 HL-RDHM을 이용하였다. 대상유역으로는 융설량 자료를 수집할 수 있는 미국 콜로라도의 Durango River 유역을 선정하였다. 다중최적화기법으로는 MOSCEM을 활용하였으며, 융설과 관련된 매개변수 5개와 유출에 관련된 매개변수 13개를 선정하여 매개변수 보정과 수문모형 최적화를 시도하였다. 모형 최적화를 위해 2004 - 2005년의 자료가 활용되었고, 2001 - 2004년 자료를 이용하여 검증하였다. 융설량과 유출량을 동시에 최적화함으로써 RMSE 기준으로, 3개의 SNOTEL 지점에서 초기해에 의한 모의치 보다 7% - 40%까지 RMSE 오차를 줄일 수 있었고, 유출구의 USGS 관측점에서 초기해에 비해 약 40% 값이 개선됨을 확인하였다.