• Title/Summary/Keyword: Hydrologic Simulation Model

Search Result 258, Processing Time 0.022 seconds

Seasonal effect on hydrological models parameters and performance

  • Birhanu, Dereje;Kim, Hyeonjun;Jang, Cheolhee;Park, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.326-326
    • /
    • 2018
  • The study will assess the seasonal effect of hydrological models on performance and parameters for streamflow simulation. TPHM, GR4J, CAT, and TANK-SM hydrological models will be applied for simulating streamflow in ten small and large watersheds located in South Korea. The readily available hydrometeorological data will be applied as an input to the four hydrological models and the potential evapotranspiration will be computed using the Penman-Monteith equation. The SCE-UA algorithm implemented in PEST will be used to calibrate the models considering similar objective functions bedside the calibration will be renewed to capture the seasonal effects on the model performance and parameters. The seasonal effects on the model performance and parameters will be presented after assessing the four hydrologic models results. The conventional approach and season-based results will be evaluated for each model in the tested watersheds and a conclusion will be made based on the finding of the results.

  • PDF

A study on the stochastic generation of annual runoff (연유출량의 추계학적 모의발생에 관한 연구)

  • 이순혁;박명근;맹승진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.2
    • /
    • pp.31-40
    • /
    • 1995
  • This study was conducted to get best fitting frequency distribution for the annual run- off and to simulate long series of annual flows by single-season first order Markov Model with comparison of statistical parameters which were derived from observed and synthetic flows at four watersheds in Seom Jin and Yeong San river systems. The results summarized through this study are as follows. 1. Hydrologic persistence of observed flows was acknowledged by the correlogram analysis. 2. A normal distribution of the annual runoff for the applied watersheds was confirmed as the best one among others by Kolmogorov-Smirnov test. 3. Statistical parameters were calculated from synthetic flows simulated by normal dis- tribution. In was confirmed that mean and standard deviation of simulated flows are much closer to those of observed data than except coefficient of skewness. 4. Hydrologic persistence between observed flows and synthetic flows simulated was also confirmed by the correlogram analysis. 5. It is to be desired that generation technique of synthetic flow in this study would be compared with other simulation techniques for the objective time series.

  • PDF

Analysis of Flow Duration Based on SWAT-K Simulation for Construction of Natural Riparian (자연하안조성을 위한 SWAT-K 모의치 기반 유황 분석)

  • Kim, Nam-Won;Lee, Jeong-Woo;Chung, Il-Moon;Kim, Ji-Tae
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1457-1464
    • /
    • 2011
  • In this study, the method of estimating hydrologic information (water depth, submerged period etc.) on the proper selection of construction point and scale as well as vegetation type suggested for the design of natural riparian rehabilitation structure. Long-term comprehensive watershed model SWAT-K(Korea) was applied to this purpose. Flow duration analysis was conducted to analyze the hydrologic characteristics of Pyungchang watershed at which the 'bangtul' construction method was tested. For this purpose 20 years (1989-2008) rainfall runoff analysis was carried out. Based on the simulated daily streamflow data, flow duration curve was made to analyze the flow characteristics, and the water depth hydrograph was made to analyze the water depth distribution at the cross section. Finally, the information for the selection of proper vegetation according to the submerged period is suggested.

A Sensitivity of Simulated Runoff Characteristics on the Different Spatial Resolutions of Precipitation Data (강우자료의 공간해상도에 따른 모의 유출특성 민감도 고찰)

  • Lee, Dogil;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.37-49
    • /
    • 2023
  • Rainfall data is one of the most important data in hydrologic modeling. In this study, the impacts of spatial resolution of precipitation data on hydrological responses were assessed using SWAT in the Santa Fe River Basin, Florida. High correlations were found between the FAWN and NLDAS rainfall data, which are observed weather data and simulated weather data based on observed data, respectively. FAWN-based scenarios had higher maximum rainfall and more rainfall days and events compared to NLDAS-based scenarios. Downstream areas showed lower correlations between rainfall and peak discharge than upstream areas due to the characteristics of study site. All scenarios did not show significant differences in base flow, and showed less than 5% of differences in high flows among NLDAS-based scenarios. The impact of resolution will appear differently depending on the characteristics of the watershed and topography and the applied model, and thus, is a process that must be considered in advance in runoff simulation research. The study suggests that applying the research method to watersheds in Korea may yield more pronounced results, and highlights the importance of considering data resolution in hydrologic modeling.

A Study on the Simulation of Daily Precipitation Using Multivariate Kernel Density Estimation (다변량 핵밀도 추정법을 이용한 일강수량 모의에 대한 연구)

  • Cha, Young-Il;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.595-604
    • /
    • 2005
  • Precipitation simulation for making the data size larger is an important task for hydrologic analysis. The simulation can be divided into two major categories which are the parametric and nonparametric methods. Also, precipitation simulation depends on time intervals such as daily or hourly rainfall simulations. So far, Markov model is the most favored method for daily precipitation simulation. However, most models are consist of state transition probability by using the homogeneous Markov chain model. In order to make a state vector, the small size of data brings difficulties, and also the assumption of homogeneousness among the state vector in a month causes problems. In other words, the process of daily precipitation mechanism is nonstationary. In order to overcome these problems, this paper focused on the nonparametric method by using uni-variate and multi-variate when simulating a precipitation instead of currently used parametric method.

Digital simulation model for soil erosion and Sediment Yield from Small Agricultural Watersheds(I) (농업 소류역으로부터의 토양침식 및 유사량 시산을 위한 전산모의 모델 (I))

  • 권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.108-114
    • /
    • 1980
  • A deterministic conceptual erosion model which simulates detachment, entrainment, transport and deposition of eroded soil particles by rainfall impact and flowing water is presented. Both upland and channel phases of sediment yield are incorporated into the erosion model. The algorithms for the soil erosion and sedimentation processes including land and crop management effects are taken from the literature and then solved using a digital computer. The erosion model is used in conjunction with the modified Kentucky Watershed Model which simulates the hydrologic characteristics from watershed data. The two models are linked together by using the appropriate computer code. Calibrations for both the watershed and erosion model parameters are made by comparing the simulated results with actual field measurements in the Four Mile Creek watershed near Traer, Iowa using 1976 and 1977 water year data. Two water years, 1970 and 1978 are used as test years for model verification. There is good agreement between the mean daily simulated and recorded streamflow and between the simulated and recorded suspended sediment load except few partial differences. The following conclusions were drawn from the results after testing the watershed and erosion model. 1. The watershed and erosion model is a deterministic lumped parameter model, and is capable of simulating the daily mean streamflow and suspended sediment load within a 20 percent error, when the correct watershed and erosion parameters are supplied. 2. It is found that soil erosion is sensitive to errors in simulation of occurrence and intensity of precipitation and of overland flow. Therefore, representative precipitation data and a watershed model which provides an accurate simulation of soil moisture and resulting overland flow are essential for the accurate simulation of soil erosion and subsequent sediment transport prediction. 3. Erroneous prediction of snowmelt in terms of time and magnitute in conjunction with The frozen ground could be the reason for the poor simulation of streamflow as well as sediment yield in the snowmelt period. More elaborate and accurate snowmelt submodels will greatly improve accuracy. 4. Poor simulation results can be attributed to deficiencies in erosion model and to errors in the observed data such as the recorded daily streamflow and the sediment concentration. 5. Crop management and tillage operations are two major factors that have a great effect on soil erosion simulation. The erosion model attempts to evaluate the impact of crop management and tillage effects on sediment production. These effects on sediment yield appear to be somewhat equivalent to the effect of overland flow. 6. Application and testing of the watershed and erosion model on watersheds in a variety of regions with different soils and meteorological characteristics may be recommended to verify its general applicability and to detact the deficiencies of the model. Futhermore, by further modification and expansion with additional data, the watershed and erosion model developed through this study can be used as a planning tool for watershed management and for solving agricultural non-point pollution problems.

  • PDF

Variation analysis of Streamflow through partitioning of appropriate subwatersheds and Hydrologic Response Unit(HRU) using BASINS SWAT(Yongdam Dam Watershed) (BASINS SWAT을 이용한 소유역 및 HRU 구분에 따른 유출량 변화 분석(용담댐 유역을 대상으로))

  • Jang, Cheol-Hee;Kim, Hyeon-Joon;Kim, Nam-Won
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.467-470
    • /
    • 2003
  • The size, scale, and number of subwatersheds can affect a watershed modeling process and subsequent results. The objective of this study was to determine the appropriate level of subwatershed division for simulating streamflow. The Soil and Water Assessment Tool(SWAT) model with a GIS interface(BASINS SWAT) was applied to Yongdam Dam watershed. Daily output was analyzed from simulation, which was executed for 10 years using climate data representing the 1987 to 1996 period. The optimal number of subwatersheds and HRUs to adequately predict streamflow was found to be around 15, 174. Increasing the number of subwatersheds and HRUs beyond this level does not significantly affect the computed streamflow. this number of subwatersheds and HRUs can be used to optimize SWAT input data preparation requirements and simplify the interpretation of results without compromising simulation accuracy.

  • PDF

A Method of Simulating Ephemeral Stream Runoff Characteristics in Cheonmi-cheon Watershed, Jeju Island (제주 천미천 유역의 간헐하천 유출특성 모의 방안)

  • Kim, Nam-Won;Chung, Il-Moon;Na, Hanna
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.523-531
    • /
    • 2013
  • In this study, a method of simulating ephemeral stream runoff characteristics in Jeju watershed is newly suggested. The process based conceptual-physical scheme is established based on the SWAT-K and applied to Cheonmi-cheon watershed which shows the typical pattern of ephemeral stream runoff characteristics. For the proper simulation of this runoff, the intermediate flow and baseflow are controlled to make downward percolation should be dominant. The result showed that surface runoff simulated by using the modified scheme showed good agreement with observed runoff data. In addition, it was found that the estimated runoff directly affected the groundwater recharge rate. This conceptual model should be continuously progressed including rainfall interception, spatially estimated evapotranspiration and so forth for the reasonable simulation of the hydrologic characteristics in Jeju island.

Runoff Analysis of Urban Small Watershed (도시 소유역의 유출변화 분석)

  • 이기춘;박승우;최진규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.45-57
    • /
    • 1989
  • The hydrologic model FESHM was introduced and its applicability was investigated in an attempt to analyze the rainfall-runoff relationships of urban small watersheds and to hereafter predict the envi-ronmental changes. Basic data on rainfall, water level, geomorphological characterisitics and land use were obtained from Yeonwha stream watershed located in Chonju-si Dukjin-dong. WL-5 for simulation o subshed WS# 1(136.7 ha) with urban district and WL-1 for total watershed WS#5 (278.78 ha) we'e selected as gaging points. The main results gained through applications were summarized as follows. 1. Direct runoff ratio caalculated from a simple separation method for WS#5 WS# 1 was 2O~39%, 38~62%, respectively. 2. Simulations for the runoff estimation were carried out for each watershed using 5 rainfall events, the simulation errors had the range of 2~ 30%, O~ 63% and O 120 minutes for the runoff volume, peak flow and peak time, respectively. 3. The effect of landuse change by urbanization was tested to WS# 1, runoff volume before development was estimated as from tenth to twentieth against after development.

  • PDF

Developing Surface Water Quality Modeling Framework Considering Spatial Resolution of Pollutant Load Estimation for Saemangeum Using HSPF (오염원 산정단위 수준의 소유역 세분화를 고려한 새만금유역 수문·수질모델링 적용성 검토)

  • Seong, Chounghyun;Hwang, Syewoon;Oh, Chansung;Cho, Jaepil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.83-96
    • /
    • 2017
  • This study presented a surface water quality modeling framework considering the spatial resolution of pollutant load estimation to better represent stream water quality characteristics in the Saemangeum watershed which has been focused on keeping its water resources sustainable after the Saemangeum embankment construction. The watershed delineated into 804 sub-watersheds in total based on the administrative districts, which were units for pollutant load estimation and counted as 739 in the watershed, Digital Elevation Model (DEM), and agricultural structures such as drainage canal. The established model consists of 7 Mangyung (MG) sub-models, 7 Dongjin (DJ) sub-models, and 3 Reclaimed sub-models, and the sub-models were simulated in a sequence of upstream to downstream based on its connectivity. The hydrologic calibration and validation of the model were conducted from 14 flow stations for the period of 2009 and 2013 using an automatic calibration scheme. The model performance to the hydrologic stations for calibration and validation showed that the Nash-Sutcliffe coefficient (NSE) ranged from 0.66 to 0.97, PBIAS were -31.0~16.5 %, and $R^2$ were from 0.75 to 0.98, respectively in a monthly time step and therefore, the model showed its hydrological applicability to the watershed. The water quality calibration and validation were conducted based on the 29 stations with the water quality constituents of DO, BOD, TN, and TP during the same period with the flow. The water quality model were manually calibrated, and generally showed an applicability by resulting reasonable variability and seasonality, although some exceptional simulation results were identified in some upstream stations under low-flow conditions. The spatial subdivision in the model framework were compared with previous studies to assess the consideration of administrative boundaries for watershed delineation, and this study outperformed in flow, but showed a similar level of model performance in water quality. The framework presented here can be applicable in a regional scale watershed as well as in a need of fine-resolution simulation.