• 제목/요약/키워드: Hydrogeothermal systems

검색결과 3건 처리시간 0.015초

몽골의 심부 지열에너지 자원과 지열발전에 관한 연구 (A Study on Deep Geothermal Energy and Potential of Geothermal Power Generation in Mongolia)

  • 한정상;윤운상;김영식;한찬;박유철;목종구
    • 한국지열·수열에너지학회논문집
    • /
    • 제8권3호
    • /
    • pp.1-11
    • /
    • 2012
  • Mongolia has three(3) geothermal zones and eight(8) hydrogeothermal systems/regions that are, fold-fault platform/uplift zone, concave-largest subsidence zone, and mixed intermediate-transitional zone. Average temperature, heat flow, and geothermal gradient of hot springs in Arhangai located to fold-fault platform/uplift zone are $55.8^{\circ}C$, 60~110 mW/m2 and $35{\sim}50^{\circ}C/km$ respectively and those of Khentii situated in same zone are $80.5^{\circ}C$, 40~50 mW/m2, and $35{\sim}50^{\circ}C/km$ separately. Temperature of hydrothermal water at depth of 3,000 m is expected to be about $173{\sim}213^{\circ}C$ based on average geothermal gradient of $35{\sim}50^{\circ}C/km$. Among eight systems, Arhangai and Khentii located in A type hydrothermal system, Khovsgol in B type, Mongol Altai plateau in C type, and Over Arhangai in D type are the most feasible areas to develop geothermal power generation by Enhanced Geothermal System (EGS). Potential electric power generation by EGS is estimated about 2,760 kW at Tsenher, 1,752 kW at Tsagaan Sum, 2,928 kW at Khujir, 2,190 kW at Baga Shargaljuut, and 7,125 kW at Shargaljuut.

천부 지열에너지로서의 지하 열에너지 저장 기술 동향 (Status of Underground Thermal Energy Storage as Shallow Geothermal Energy)

  • 심병완;이철우
    • 자원환경지질
    • /
    • 제43권2호
    • /
    • pp.197-205
    • /
    • 2010
  • 최근 급격한 기후변화가 세계적 또는 국지적으로 발생하고 있으며, 지구온난화에 대한 대책으로 $CO_2$ 저감 기술들이 중요한 해결책으로 여겨지고 있다. 이 기술들에 대한 한 방법으로서 대체에너지를 개발하고 있는 대부분의 국가에서 천부 지하 열에너지 저장 (UTES: underground thermal energy storage)은 신뢰성 있는 냉난방 기술로 적용되어 왔다. 천부의 토양이나 암반, 대수층내 지하수 및 지하공간내 저장된 유체 등의 열 에너지원을 이용하는 지열 시스템은 일반적으로 열에너지의 회복과 저장의 개념을 기반으로 한다. 아직 국내에서는 이러한 기술 개발이 기초적이지만 지속적인 연구들을 수행한다면 보다 친환경적이며 경제성 및 효율이 높은 시스템을 개발할 수 있을 것으로 본다. 국내 지반은 대수층이 전국적으로 분포하고 있으므로 수리지열학적 특성을 활용한 고효율의 시스템 개발이 용이하다. 그러나 UTES에 대한 이해 부족 및 제도적 문제들로 다양한 시스템이 개발되지 못하고 국내에는 90% 이상이 단편적인 폐회로형 지열시스템으로 보급되고 있다. 비효율적인 지열시스템의 보급 확산을 방지하기 위해서는 지반의 수리 지열학적 특성을 반영한 선진화된 UTES 시스템들을 개발할 필요가 있다. 개선된 시스템 보급을 위하여 국제적인 협력이 필수적이며, 지속적인 UTES 연구를 통하여 천부 지열시스템의 효율을 개선시킬 수 있다.

몽골의 천부 지열에너지(냉난방 에너지)개발 가능성에 관한 연구 (A Study on Development Potential of Shallow Geothermal Energy as Space Heating and Cooling Sources in Mongolia)

  • 한정상;윤운상;윤건신;이태열;김형수
    • 한국지열·수열에너지학회논문집
    • /
    • 제8권2호
    • /
    • pp.36-47
    • /
    • 2012
  • Time-series variation of groundwater temperature in Mongolia shows that maximum temperature is occured from end of October to the first of February(winter time) and minimum temperature is observed from end of April to the first of May(summer time). Therefore ground temperature is s a good source for space heating in winter and cooling in summer. Groundwater temperatures monitored from 3 alluvial wells in Ulaabaatar at depth between 20 and 24 m are $(4.43{\pm}0.8)^{\circ}C$ with average of $4.21^{\circ}C$ but mean annual ground temperature(MAGT) at the depth of 100 m in Ulaanbaatar was about $3.5{\sim}6.0^{\circ}C$. Bore hole length required to extract 1 RT's heat energy from ground in heating time and to reject 1 RT's heat energy to ground in summer time are estimated about 130 m and 98 m respectively. But in case that thermally enhanced backfill and U tube pipe placement along the wall are used, the length can be reduced about 25%. Due to low MAGT of Ulaabaatar such as $6^{\circ}C$, the required length of GHX in summer cooling time is less than the one of winter heating time. Mongolia has enough available property, therefore the most cost effective option for supplying a heating energy in winter will be horizontal GHX which absorbs solar energy during summer time. It can supply 1 RT's ground heat energy by 570 m long horizontally installed GHX.