• 제목/요약/키워드: Hydrogen-bond complexes

검색결과 35건 처리시간 0.021초

Theoretical Investigation of the Hydrogen-bonded Halide-acetylene Anion Complexes

  • Byeong-Seo Cheong
    • 대한화학회지
    • /
    • 제68권2호
    • /
    • pp.65-73
    • /
    • 2024
  • The halide-acetylene anions, X--HCCH (X = F, Cl, and Br) have been studied by using several different ab initio and DFT methods to determine structures, hydrogen-bond energies, vibrational frequencies of the anion complexes. Although the halide-acetylene complexes all have linear equilibrium structures, it is found that the fluoride complex is characterized with distinctively different structure and interactions compared to those of the chloride and bromide complexes. The performance of various density functionals on describing ionic hydrogen-bonded complexes is assessed by examining statistical deviations with respect to high level ab initio CCSD(T) results as reference. The density functionals employed in the present work show considerably varying degrees of performance depending on the properties computed. The performances of each density functional on geometrical parameters related with the hydrogen bond, hydrogen-bond energies, and scaled harmonic frequencies of the anion complexes are examined and discussed based on the statistical deviations.

Theoretical Studies for Strong Hydrogen Bonds in Trimethyl Phosphate-(HNO3)n Complexes, n=1-3

  • Kim, Yong-Ho;Kim, Hak-Won;Park, Kwang-Heon
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권12호
    • /
    • pp.1811-1815
    • /
    • 2002
  • We have calculated energies and structures for the hydrogen bonded clusters between trimethyl phosphate and nitric acids. The hydrogen bond lengths between phosphoryl oxygen and the proton of nitric acid are short compared to normal hydrogen bonds, and the H-bond strengths are fairly strong. The hydrogen bond length becomes longer, and the strength becomes weaker, as more nitric acids are bound to the TMP. The average H-bond strengths for the $TMP-(HNO_3)_n$ complexes with n = 1, 2, and 3, are 9.6, 7.9 and 6.4kcal/mol at 300K respectively. Weak hydrogen bonds between nitrate oxygen and methyl proton might contribute to the stability of the clusters. Not only the BSSE but also the fragment relaxation energies should be considered to calculate hydrogen bond strengths for the complexes accurately.

Interplay of the Intramolecular Water Vibrations and Hydrogen Bond in N-Methylacetamide-Water Complexes: Ab Initio Calculation Studies

  • Kim, Joo-Hee;Cho, Min-Haeng
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권8호
    • /
    • pp.1061-1068
    • /
    • 2003
  • The correlation between the water and N-methylacetamide (NMA) intramolecular vibrational frequencies and the hydrogen-bond length in a variety of NMA-H₂O and NMA-D₂O complexes was investigated by carrying out ab initio calculations. As the hydrogen-bond length decreases, the frequencies of bending and stretching modes of the hydrogen-bonding water increases and decreases, respectively, and the amide I and II (III) mode frequencies of the NMA decreases and increases, respectively. In this paper, correlation maps among the amide (I, II, and III) modes of NMA and three intramolecular water modes are thus established, which in turn can be used as guidelines for interpreting two-dimensional vibrational spectra of aqueous NMA solutions.

Ab Initio Studies of Lithium Bonded Complexes with H$_2$O Molecule

  • Baik, Dae-Hyun;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권3호
    • /
    • pp.126-129
    • /
    • 1988
  • Lithium bonded complexes with $H_2O$ molecule were investigated theoretically by varying the substituent of lithium compound as follows; LiH, LiLi, $LiCH_3,\;LiNH_2$, LiOH, LiF, and LiCl. Some hydrogen bonded complexes with $H_2O$ molecule were also investigated to be compared with lithium bonded analogues. Electron correlation effect on the structures and energies of lithium bond was also investigated through MP2 and MP4 corrections. Unlike hydrogen bond with $H_2O$ molecule, lithium bonded complexes with $H_2O$ molecule were found to be interacting linearly with $H_2O$ molecule. Electron correlation effect was very small for lithium bonded complexes. The lithium bond energies were found to be less affected by the choice of substituent of lithium compound.

Ab Initio Studies of Hydrogen Bihalide Anions: Anharmonic Frequencies and Hydrogen-Bond Energies

  • Cheong, Byeong-Seo
    • 대한화학회지
    • /
    • 제63권4호
    • /
    • pp.237-245
    • /
    • 2019
  • Hydrogen bihalide anions, $XHX^-$ (X = F, Cl, and Br) have been studied by high level ab initio methods to determine the molecular structure, vibrational frequencies, and energetics of the anions. All bihalide anions are found to be of linear and symmetric structures, and the calculated bond lengths are consistent with experimental data. The harmonic frequencies exhibit large deviations from the experimental frequencies, suggesting the vibrations of these anions are very anharmonic. Two different approaches, the VSCF and VPT2 methods, are employed to calculate the anharmonic frequencies, and the results are compared with the experimental frequencies. While the ${\nu}_1$ and ${\nu}_2$ frequencies are in reasonable agreement with the experimental values, the ${\nu}_3$ and ${\nu}_1+{\nu}_3$ frequencies still exhibit large deviations. The hydrogen-bond energies and enthalpies are calculated at various levels including the W1BD and G4 composite methods. The hydrogen-bond enthalpies calculated are in good agreement with the experimental values.

Ab initio Calculations of Protonated Ethylenediamine-(water)3 Complex: Roles of Intramolecular Hydrogen Bonding and Hydrogen Bond Cooperativity

  • 부두완
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권7호
    • /
    • pp.693-698
    • /
    • 2001
  • Ab initio density functional calculations on the structural isomers, the hydration energies, and the hydrogen bond many-body interactions for gauche-, trans-protonated ethylenediamine-(water)3 complexes (g-enH+(H2O)3, t-enH+(H2O)3) have been performed. The structures and relative stabilities of three representative isomers (cyclic, tripod, open) between g-enH+(H2O)3 and t-enH+(H2O)3 are predicted to be quite different due to the strong interference between intramolecular hydrogen bonding and water hydrogen bond networks in g-enH+(H2O)3. Many-body analyses revealed that the combined repulsive relaxation energy and repulsive nonadditive interactions for the mono-cyclic tripod isomer, not the hydrogen bond cooperativity, are mainly responsible for the greater stability of the bi-cyclic isomer.

아미노 치환 피리딘-물 착화합물의 수소결합에 대한 DFT 연구 (DFT Studies on Hydrogen Bonding in Water Complexes of Amino-substituted Pyridine)

  • 이갑용;김옥주
    • 대한화학회지
    • /
    • 제47권2호
    • /
    • pp.96-103
    • /
    • 2003
  • 피리딘-물 착화합물을 포함한 아미노 치환 피리딘-물 착화합물의 수소결합 상호작용에너지를 조사하기 위하여 Density Functional Theory(DFT) 계산을 수행하였다. 아울러 피리딘 및 아미노 치환 피리딘 분자들의 몇가지 평형구조의 성질을 B3LYP/aug-cc-pVDZ 수준에서 구하였다. 그 결과 피리딘의 아미노 치환은 피리딘의 양성자 친화도를 증가시키고 수소결합을 안정화시킴을 알았다. 물과의 착화합물 형성에 따른 안정화 정도는 아미노기의 수와 치환 위치에 따라 변하였다.

Hydrogenation of trans-Cinnamaldehyde with Hydrido-Carbonyl Osmium(II) Complexes of Chelating Phosphine Ligands

  • 정민교;허성;이원용;전무진
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권8호
    • /
    • pp.806-810
    • /
    • 1997
  • A series of new hydridocarbonyl osmium(Ⅱ) complexes, OsHCl(CO)(PPh3)(L-L)[L-L=Ph2P(CH2)nPPh2 (n=1 (1), 2 (2), 3 (3), cis-Ph2PCH=CHPPh2 (4), and Fe(η5-C5H4PPh2)2 (5)] has been synthesized from OsHCl(CO)(PPh3)3 and chelating diphosphines. These complexes have been characterized by IR, 1H NMR and elemental analysis. The catalytic activities of these complexes both for the transfer hydrogenation of trans-cinnamaldehyde with 2-propanol as the hydrogen donor, and for the selective hydrogenation of trans-cinnamaldehyde with H2, have been examined. Complexes (1)-(5) were shown to have higher selectivities for the transfer hydrogenation of the C=O bond of aldehyde than for the transfer hydrogenation of the C=C bond of aldehyde. The selectivities for the transfer hydrogenation with 2-propanol as well as for the hydrogenation with H2 have been found to decrease in the order 3 > 5 > 2 > 4 > 1. Complex (3) has shown to possess almost 90% of the selectivity to cinnamyl alcohol for transfer hydrogenation. It is also found that there is a correlation between the ν(CO) of each complex and the hydrogenation, of the C=O bond of trans-cinnamaldehyde. Overall, the selectivities with the complexes (1)-(5) are greater for the transfer hydrogenation with 2-propanol than for the hydrogenation with H2.

메소-1,2-디아민을 이용한 Salen-코발트 착화합물의 합성과 항암효과 (Synthesis of Salens and Their Cobalt Complexes from Meso-1,2-Diamine and Their Anti-Cancer Property)

  • 고동수
    • Journal of Applied Biological Chemistry
    • /
    • 제53권2호
    • /
    • pp.108-111
    • /
    • 2010
  • New salens (3) and their Cobalt complexes (4) were prepared from meso-1,2-bis(ortho-hydroxyphenyl)-1,2-diaminoethane (1) and substituted salicylic aldehydes (2). In contrast to symmetric structure of salen ligand (3), salen-Co(III) complexes (4) showed dissymmetric molecular structure due to participation of three hydroxyl groups in complex formation. One of the salens (3b) revealed decrease in Cyclin D1 expression, which represents anti-cancer property.