• Title/Summary/Keyword: Hydrogen water

Search Result 2,110, Processing Time 0.029 seconds

Geochemical Characteristics of the Gyeongju LILW Repository II. Rock and Mineral (중.저준위 방사성폐기물 처분부지의 지구화학 특성 II. 암석 및 광물)

  • Kim, Geon-Young;Koh, Yong-Kwon;Choi, Byoung-Young;Shin, Seon-Ho;Kim, Doo-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.307-327
    • /
    • 2008
  • Geochemical study on the rocks and minerals of the Gyeongju low and intermediate level waste repository was carried out in order to provide geochemical data for the safety assessment and geochemical modeling. Polarized microscopy, X-ray diffraction method, chemical analysis for the major and trace elements, scanning electron microscopy(SEM), and stable isotope analysis were applied. Fracture zones are locally developed with various degrees of alteration in the study area. The study area is mainly composed of granodiorite and diorite and their relation is gradational in the field. However, they could be easily distinguished by their chemical property. The granodiorite showed higher $SiO_2$ content and lower MgO and $Fe_2O_3$ contents than the diorite. Variation trends of the major elements of the granodiorite and diorite were plotted on the same line according to the increase of $SiO_2$ content suggesting that they were differentiated from the same magma. Spatial distribution of the various elements showed that the diorite region had lower $SiO_2,\;Al_2O_3,\;Na_2O\;and\;K_2O$ contents, and higher CaO, $Fe_2O_3$ contents than the granodiorite region. Especially, because the differences in the CaO and $Na_2O$ distribution were most distinct and their trends were reciprocal, the chemical variation of the plagioclase of the granitic rocks was the main parameter of the chemical variation of the host rocks in the study area. Identified fracture-filling minerals from the drill core were montmorillonite, zeolite minerals, chlorite, illite, calcite and pyrite. Especially pyrite and laumontite, which are known as indicating minerals of hydrothermal alteration, were widely distributed in the study area indicating that the study area was affected by mineralization and/or hydrothermal alteration. Sulfur isotope analysis for the pyrite and oxygen-hydrogen stable isotope analysis for the clay minerals indicated that they were originated from the magma. Therefore, it is considered that the fracture-filling minerals from the study area were affected by the hydrothermal solution as well as the simply water-rock interaction.

  • PDF

Stable isotope, Fluid Inclusion and Mineralogical Studies of the Samkwang Gold-Silver Deposits, Republic of Korea (삼광 금-은광상의 산출광물, 유체포유물 및 안정동위원소 연구)

  • 유봉철;이현구;최선규
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.299-316
    • /
    • 2002
  • The Samkwang gold-silver deposits consist of gold-silver-bearing hydrothermal massive quartz veins which filled the fractures along fault shear (NE, NW) zones within Precambrian banded or granitic gneiss of Gyeonggi massif. Ore mineralization of this deposits occurred within a single stage of quartz vein which was formed by multiple episodes of fracturing and healing. Based on vein mineralogy and paragenesis, massive quartz veins are divided into two main paragenetic stages which are separated by a major faulting event. Main ore mineralization occurred at stage I. Wall-rock alteration from this deposits occur as mainly sericitization, chloritization, silicification and minor amounts of pyritization, carbonitization, propylitization and argillitization. Ore minerals are composed mainly of arsenopyrite (29.21-32.24 As atomic %), pyrite, sphalerite (6.45-13.82 FeS mole %), chalcopyrite, galena with minor amounts of pyrrhotite, marcasite, electmm (39.98-66.82 Au atomic %) and argentite. Systematic studies of fluid inclusions in early quartz veins and microcracks indicate two contrasting physical-chemical conditions: 1). temperature (215-345$^{\circ}$C) and pressure (1296-2022 bar) event with $H_{2}O-CO_{2}-CH_{4}-NaCl$fluids (0.8-6.3 wt. %) related to the early sulfide deposition, 2). temperature (203-441$^{\circ}$C) and pressure (320 bar) event with $H2_{O}$-NaCI $\pm$ $CO_{2}$ fluids (5.7-8.8 wt. %) related to the late sulfide and electrum assemblage. The H20-NaCI $\pm$ $CO_{2}$ fluids represent fluids evolved through fluid unmixing of an $H_{2}O-CO_{2}-CH_{4}-NaCl$fluids due to decreases in fluid pressure and influenced of deepcirculated meteoric waters possibly related to uplift and unloading of the mineralizing suites. Calculated sulfur isotope compositions (${\delta}^{34}S_{fluid}$) of hydrothermal fluids (1.8-4.9$\textperthousand$) indicate that ore sulfur was derived from an igneous source. Measured and calculated oxygen and hydrogen isotope compositions (${\delta}^{18}O_{I120}$, ${\delta}D$) of ore fluids (-5.9~10.9$\textperthousand$, -102~-87$\textperthousand$) indicate that mesothermal auriferous fluids at Samkwang gold-silver deposits were likely mixtures of $H_{2}O$-rich, isotopically less evolved meteoric water and magmatic fluids.

Ethanol Induced Leucocytic and Hepatic DNA Strand Breaks Are Prevented by Styela clava and Styela plicata Supplementation in Male SD Rats (알코올로 인한 흰쥐의 백혈구 및 간 DNA 손상에 미치는 미더덕과 오만둥이 분말의 보충섭취 효과)

  • Kim, Jung-Mi;Park, Hae-Ryoung;Lee, Seung-Cheol;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.10
    • /
    • pp.1271-1278
    • /
    • 2007
  • In this study, the ability of Styela clava or Styela plicata to reduce ethanol-induced hepatotoxicity and hepatic and leucocytic DNA damages was evaluated. Twenty four male SD rats were given 25% ethanol containing water (ad lib, p.o.) and divided into 3 groups; ethanol treated control group (EtOH), ethano1+3% S. clava (EtOH+SC), and ethano1+3% S. plicata (EtOH+SP). After 6 weeks, the supplementation of S. clava reduced the plasma ALT, ALP and LDH activities significantly (p<0.05), while S. plicata induced significant decrease in the plasma LDH activity only. The comet assay was employed to quantify the alcohol-induced DNA damage in rat hepatocytes and leucocytes. A significant protective effect on hepatic and leucocytic DNA damages was observed in S. clava or S. plicata supplemented groups compared to the EtOH control group. The hepatic DNA damage was correlated positively with plasma ALP and LDH activities. These results demonstrated that S. clava or S. plicata supplementation protected alcohol-induced hepatic and leucocytic DNA damage.

Removal Characteristics of Lead-contaminated Soil at Military Shooting Range by Using Soil Washing Process (토양세척공정을 이용한 군사격장 납 오염토양의 제거특성)

  • Ahn, Sung-Kyun;Kim, Chul;Lee, Joung-Man;Lee, Gang-Choon;Shon, Zang-Ho;Jung, Byung-Gil;Yoon, Tae-Kyung
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.390-397
    • /
    • 2012
  • Removal characteristics of lead-contaminated soil at the military shooting range located in the Changwon city were studied experimentally using soil washing process. As a washing solution, hydrogen chloride (HCl) concentrations of 0.001, 0.01, 0.1 and 0.2 N were used, and soil : solution ratios were 1 : 2, 1 : 3, 1 : 4, and 1 : 5. Particle diameter of contaminated soil of 4-0.075 mm, and washing period of 5, 10, 15, 20, 30, 60, and 120 min were used as operating parameters. The optimum concentration of HCl solution was 0.1 N (56.3% of Pb removal efficiency) with 15 minutes operation period in views of economics, and the optimum soil : solution ratio was determined as 1 g : 3 mL for 69.7% of Pb removal efficiency with 0.1 N HCl and 15 minutes washing period. As washing period increased, removal efficiency was increased until 20 min of the removal efficiency of 75.3%, and then almost stable. Pb removal efficiency in soil particle diameters of 0.075 mm or more was ranged from 77.0% to 82.0%, but it was decreased to 52.8% in diameter of less than 0.075 mm. Therefore, the optimum cut-off size of the soil particle diameter was found less than 0.075 mm. Combined HCl solution and ultrasonic washing method showed better removal efficiency compared to only water or HCl washing method for particle sizes above 0.075 mm.

Effect of extract temperature and duration on antioxidant activity and sensory characteristics of Ulmus pumila bark extract (추출온도 및 시간에 따른 유백피 추출물의 항산화 활성과 음료의 관능적 특성)

  • Cho, Myoung Lae;Oh, Yu-Na;Ma, Jin-Gyeong;Lee, Su-Jin;Choi, Young-Hee;Son, Dong-Hwa;Jang, Eun Hee;Kim, Jong-Yea
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.995-1003
    • /
    • 2016
  • Ulmus pumila L. bark underwent distilled water extraction under three temperature condition ($4^{\circ}C$, room temperature, or $80^{\circ}C$) and two extraction times (1, or 5 min) in order to develop a functional beverage products. Changes in yield, pH, color, total phenolic (TP) content, tannin content and antioxidant activity of the aqueous extracts were evaluated for each extraction temperature and duration. Extraction conditions did not affect yield or pH value of the extracts; however CIE $b^*$ values were high in extracts prepared under high extraction temperature ($80^{\circ}C$) and long extraction duration (5 min) conditions. Both extraction temperature and duration affected the TP and tannin contents of the extracts; however, all extraction conditions resulted in ${\geq}450\;mg\;GAE/g$ TP content and ${\geq}80\;mg\;CE/g$ tannin content. All extracts exhibited ABTS and DPPH radical scavenging ability similar to that of vitamin C. Nitric oxide inhibition activity was lower in the 5 min duration sample than in the 1 min sample. The $4^{\circ}C$ extraction temperature produced an extract with the highest reducing power and hydrogen peroxide values. Extraction temperature also affected sensory evaluation results with the $80^{\circ}C$ extraction temperature producing significantly higher flavor, bitterness, and color score, than those obtained under $4^{\circ}C$ and room temperature extraction conditions.

Preparation of Halloysite-Based Tubular Media for Enhanced Methylene Blue Adsorption (메틸렌 블루 흡착능 향상을 위한 할로이사이트 기반 튜브형 담체 연구)

  • Jeon, Junyeong;Cho, Yebin;Kim, Jongwook;Shin, Seung Gu;Jeon, Jong-Rok;Lee, Younki
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.359-366
    • /
    • 2021
  • Halloysite nanotubes (HNTs), the multiwalled clay mineral with the composition of Al2Si2O5(OH)4·nH2O, have been highlighted as a low-cost adsorbent for the removal of dyes from wastewater. Although a powder of halloysite presents a high specific surface area, forming media are significantly considered due to sludge-clogging induced by the water-bound agglomeration. However, higher firing temperature to achieve the structural durability of the media and lower utilization rate due to longer penetration depth into the media act as hurdles to increase the dye-adsorption capacity. In this work, the retention of the adsorption capacity of halloysite was evaluated with methylene blue solution after the heat treatment at 750 ℃. In order to improve the utilization rate, tubular media were fabricated by extrusion. The images taken by transmission electron microscopy show that HNTs present excellent structural stability under heat treatment. The HNTs also provide superb capacity retention for MB adsorption (93%, 18.5 mg g-1), while the diatomite and Magnesol® XL show 22% (7.65 mg g-1) and 6% (11.7 mg g-1), respectively. Additionally, compositing with lignin enhances adsorption capacity, and the heat treatment under the hydrogen atmosphere accelerates the adsorption in the early stage. Compared to the rod-type, the tubular halloysite media rapidly increases methylene blue adsorption capacity.

Evaluation of microplastic in the inflow of municipal wastewater treatment plant according to pretreatment methods (전처리 방법에 따른 하수처리장 유입수에서의 미세플라스틱 성상분석 평가)

  • Kim, Sungryul;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.83-92
    • /
    • 2022
  • The amount of the plastic waste has been increasing according to global demand for plastic. Microplastics are the most hazardous among all plastic pollutants due to their toxicity and unknown physicochemical properties. This study investigates the optimal methodology that can be applied to sewage samples for detecting microplastics before discussing reducing microplastics in MWTPs. In this study, the effect of different pretreatment methods while detecting microplastic analysis of MWTP influent samples was investigated; the samples were collected from the J sewage treatment plant. There are many pretreatment methods but two of them are widely used: Fenton digestion and hydrogen peroxide oxidation. Although there are many pretreatment methods that can be applied to investigate microplastics, the most widely used methods for sewage treatment plant samples are Fenton digestion and H2O2 oxidation. For each pretreatment method, there were factors that could cause an error in the measurement. To overcome this, in the case of the Fenton digestion pretreatment, it is recommended to proceed with the analysis by filtration instead of the density separation method. In the case of the H2O2 oxidation method, the process of washing with distilled water after the reaction is recommended. As a result of the analysis, the concentration of microplastics was measured to be 2.75ea/L for the sample using the H2O2 oxidation method and 3.2ea/L for the sample using the Fenton oxidation method, and most of them were present in the form of fibers. In addition, it is difficult to guarantee the reliability of measurement results from quantitative analysis performed via microscope with eyes. A calibration curve was created for prove the reliability. A total of three calibration curves were drawn, and as a result of analysis of the calibration curves, all R2 values were more than 0.9. This ensures high reliability for quantitative analysis. The qualitative analysis could determine the series of microplastics flowing into the MWTP, but could not confirm the chemical composition of each microplastic. This study can be used to confirm the chemical composition of microplastics introduced into MWTP in the future research.

Empirical Study of Biogas Purification Equipment (바이오가스 정제 설비의 실증 연구)

  • Hwan Cheol Lee;Jae-Heon Lee
    • Plant Journal
    • /
    • v.18 no.4
    • /
    • pp.58-65
    • /
    • 2023
  • In this study, to increase the methane content of biogas supplied from Nanji Water Regeneration Center and to purify impurities, a three-stage membrane purification process was designed and installed to demonstrate operation. The methane concentration of biomethane produced in the 2 Nm3/h purification process was set to three cases: 95%, 96.5%, and 98%, and the membrane area ratio of the membrane was 1:1, 1:2, 1:1:1, The optimum conditions for the membrane area of the separator were derived by changing to five of 1:2:1 and 1:2:2. 3 stage separation membrane process of 30 Nm3/h was installed to reflect the optimum condition of 2 Nm3/h, and biomethane production of 98% or more of methane concentration was demonstrated. As a result of the operation of the 2 Nm3/h refining device, the methane recovery rate at the 98% methane concentration was 95.6% when the membrane area ratio was 1:1 as the result of the two-stage operation of the separator, and the recovery rate of methane at 1:2 was increased to 96.8%. The methane recovery rate of the membrane three-stage operation was highest at 96.8% when the membrane area ratio was operated at 1:2:1. The carbon dioxide removal rate was 16.4 to 96.4% and the 2:2 to 95.7% film area ratio in the two-step process. In the three-step process, the film area ratio was 1:2:1 to 95.4%, and the two-step process showed higher results than the three-step process. In the 30 Nm3/h scale biogas purification demonstration operation, the methane concentration after purification was 98%, the recovery rate of methane was 97.1%, the removal rate of carbon dioxide was 95.7%, and hydrogen sulfide, the cause of corrosion, was not detected, and the membrane area ratio was 1:2:1 demonstration operation, biomethane production with a methane concentration of 98% or higher was possible.

  • PDF

Preparation of Novel Natural Polymer-based Magnetic Hydrogels Reinforced with Hyperbranched Polyglycerol (HPG) Responsible for Enhanced Mechanical Properties (과분지 폴리글리세롤(HPG) 강화를 통해 기계적 물성이 향상된 새로운 천연 고분자 기반 자성 하이드로젤의 제조)

  • Eun-Hye Jang;Jisu Jang;Sehyun Kwon;Jeon-Hyun Park;Yujeong Jeong;Sungwook Chung
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.10-21
    • /
    • 2023
  • Hydrogels that are made of natural polymer-based double networks have excellent biocompatibility, low cytotoxicity, and high water content, assuring that the material has the properties required for a variety of biomedical applications. However, hydrogels also have limitations due to their relatively weak mechanical properties. In this study, hydrogels based on an alginate di-aldehyde (ADA) and gelatin (Gel) double network that is reinforced with additional hydrogen bonds formed between the hydroxyl (-OH) groups of the hyperbranched polymer (HPG) and the functional groups present inside of the hydrogels were successfully synthesized. The enhanced mechanical properties of these synthesized hydrogels were evaluated by varying the amount of HPG added during the hydrogel synthesis from 0 to 25%. In addition, magnetite nanoparticles (Fe3O4 NPs) were synthesized within the hydrogels and the structures and the magnetic properties of the hydrogels were also characterized. The hydrogels that contained 15% HPG and Fe3O4 NPs exhibited superparamagnetic behaviors with a saturation magnetization value of 3.8 emu g-1. These particular hydrogels also had strengthened mechanical properties with a maximum compressive stress of 1.1 MPa at a strain of 67.4%. Magnetic hydrogels made with natural polymer-based double networks provide improved mechanical properties and have a significant potential for drug delivery and biomaterial application.

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF