• Title/Summary/Keyword: Hydrogen utilization

Search Result 233, Processing Time 0.028 seconds

Current Status of Magnesium Smelting and the Related Recycling Topics (마그네슘 제련(製鍊) 기술현황(技術現況)과 리싸이클링 관련(關聯) 대상분야(對象分野))

  • Park, Hyung-Kyu
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.3-11
    • /
    • 2007
  • It is to review the current status of magnesium smelting. Raw materials for magnesium source, worldwide production and producers of metallic magnesium, Korean magnesium markets and some important extraction technologies were reviewed. The magnesium extraction technologies were described according to the two major reduction methods: the fused salt electrolysis and the thermal reduction method. Also, the research on the extraction of magnesium from magnesite which has been being carried out at KIGAM was briefly introduced with discussing the related topics on the recycling of the chlorine and the hydrogen chloride gas used in the process.

Biogas-Microturbine Distributed Generation Developement at Gong-Ju Public Livestock Wastewater Treatment Facility (공주 축산폐수공공처리장에서의 바이오가스-마이크로터빈 분산발전시스템 개발)

  • Park, Jung-Keuk;Hur, Kwang-Beom;Lee, Ki-Chul;Kang, Ho;Rhim, Sang-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.229-234
    • /
    • 2008
  • Korea Electric Power Corporation (KEPCO) has started the nation's first biogas-microturbine project in the city of Gongju as an effort to encourage the utilization of wasted biogas containing useful energy source in the form of $CH_4$. The goal of the project is to set up the biogas microturbine co-generation system for utilizing biogas as an energy source and improving the economics of the wastewater treatment plant. Wastewater treatment processes were investigated in depth to find improvement possibility. Changes in internal recirculation ratio and pre-treatment degree are needed to optimize plant operation and biogas production. Biogas pre-treatment system satisfies Capstone's fuel condition requirement with the test result of 99.9% and 90.2% of hydrogen sulphide and ammonia is removal performance. Installation of microturbine and manufacture of heat exchanger to warm anaerobic digester has been done successfully. Expected economic profit produced by the system is coming from energy saving including electricity 115,871kWh/year and heat contained in exhaust gas 579GJ/year.

  • PDF

Nano Electrocatalysis for Fuel Cells

  • Sung, Yung-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.133-133
    • /
    • 2013
  • For both oxygen reduction (ORR) and hydrogen oxidation reactions (HOR) of proton electrolyte membrane fuel cells (PEMFCs), alloying Pt with another transition metal usually results in a higher activity relative to pure Pt, mainly due to electronic modification of Pt and bifunctional behaviour of alloy surface for ORR and HOR, respectively. However, activity and stability are closely related to the preparation of alloy nanoparticles. Preparation conditions of alloy nanoparticles have strong influence on surface composition, oxidation state, nanoparticle size, shape, and contamination, which result from a large difference in redox priority of metal precursors, intrinsic properties of metals, increasedreactivity of nanocrystallites, and interactions with constituents for the synthesis such as solvent, stabilizer, and reducing agent, etc. Carbon-supported Pt-Ni alloy nanoparticles were prepared by the borohydride reduction method in anhydrous solvent. Pt-Ru alloy nanoparticles supported on carbon black were also prepared by the similar synthetic method to that of Pt-Ni. Since electrocatalytic reactions are strongly dependent on the surface structure of metal catalysts, the atom-leveled design of the surface structure plays a significant role in a high catalytic activity and the utilization of electrocatalysts. Therefore, surface-modified electrocatalysts have attracted much attention due to their unique structure and new electronic and electrocatalytic properties. The carbon-supported Au and Pd nanoparticles were adapted as the substrate and the successive reduction process was used for depositing Pt and PtM (M=Ru, Pd, and Rh) bimetallic elements on the surface of Au and Pd nanoparticles. Distinct features of the overlayers for electrocatalytic activities including methanol oxidation, formic acid oxidation, and oxygen reduction were investigated.

  • PDF

Peroxopolyoxotungsten-based Ionic Hybrid as a Highly Efficient Recyclable Catalyst for Epoxidation of Vegetable oil with H2O2

  • Wu, Jianghao;Jiang, Pingping;Qin, Xiaojie;Ye, Yuanyuan;Leng, Yan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1675-1680
    • /
    • 2014
  • A peroxopolyoxotungsten-based ionic hybrid was synthesized by anion-change of peroxopolyoxometalate (POM) $PW_4O{_{24}}^{3-}$ with dicationic long-chain alkyl imidazolium ionic liquids. The characterization was conducted by FT-IR, TGA, $^1H$-NMR and CHN Elemental analyses. Its catalytic performance was evaluated by the epoxidation of soybean oil with $H_2O_2$ under solvent-free condition, including testing of organic cations influence, catalytic reusability and reaction conditions. The catalyst was proved to be a highly efficient recyclable catalyst for epoxidation of various vegetable oils with $H_2O_2$, showing high $H_2O_2$ utilization efficiency, high catalytic activity, convenient recovery and good reuse ability.

Performance Analysis of Methanol Fueled Marine Solid Oxide Fuel Cell System (메탄올 연료형 SOFC 시스템의 성능 평가)

  • Kim, Myoung-Hwan;Kil, Byung-Lea;Lim, Tae-Woo;Kim, Jong-Su;Oh, Sae-Gin;Park, Sang-Kyun;Kim, Mann-Eung;Lee, Kyung-Jin;Oh, Jin-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.448-454
    • /
    • 2010
  • The strengthened regulations for atmospheric emissions from ships have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. Recently, new kinds of propulsion power system such as fuel cell system, which use hydrogen as an energy source, have been sincerely considered. The purpose of this work is to predict the performance of methanol fueled SOFC system and to analyze the influence of operating temperature, current density, S/C, and $H_2$ utilization ratio.

Effects of Protease-resistant Antimicrobial Substances Produced by Lactic Acid Bacteria on Rumen Methanogenesis

  • Reina, Asa;Tanaka, A.;Uehara, A.;Shinzato, I.;Toride, Y.;Usui, N.;Hirakawa, K.;Takahashi, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.700-707
    • /
    • 2010
  • Effects of protease-resistant antimicrobial substances (PRA) produced by Lactobacillus plantarum and Leuconostoc citreum on rumen methanogenesis were examined using the in vitro continuous methane quantification system. Four different strains of lactic acid bacteria, i) Lactococcus lactis ATCC19435 (Control, non-antibacterial substances), ii) Lactococcus lactis NCIMB702054 (Nisin-Z), iii) Lactobacillus plantarum TUA1490L (PRA-1), and iv) Leuconostoc citreum JCM9698 (PRA-2) were individually cultured in GYEKP medium. An 80 ml aliquot of each supernatant was inoculated into phosphate-buffered rumen fluid. PRA-1 remarkably decreased cumulative methane production, though propionate, butyrate and ammonia N decreased. For PRA-2, there were no effects on $CH_4$ and $CO_2$ production and fermentation characteristics in mixed rumen cultures. The results suggested that PRA-1 reduced the number of methanogens or inhibited utilization of hydrogen in rumen fermentation.

An Experimental Study on Combustion Instability in Model Gas Turbine Combustor using Simulated SNG Fuel (모사 SNG 연료를 적용한 모델 가스터빈 연소기의 연소 불안정성에 관한 실험적 연구)

  • Choi, Inchan;Lee, Keeman
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.32-42
    • /
    • 2015
  • The combustion instability was experimentally investigated in model gas turbine combustor with dual swirl burner. When such instability occurs, a strong coupling between pressure oscillation and unsteady heat release excites a self-sustained acoustic wave which results in a loud sound, and can even cause fatal damage to the combustor and entire system. In present study, to understand the combustion instability with a premixed mixture, the detailed periods of pressure and heat release data in unstable flame mode were investigated by various measurement methods at relatively rich condition and lean condition near flammable limits. Also, to prepare the utilization of synthetic natural gas (SNG) fuel in gas turbine system, an investigation was conducted using a simulated SNG including methane as a reference fuel to examine the effects of $H_2$ content on flame stability. These results provide that the instability due to flash-back behaviour like CIVB phenomenon occurred at rich condition, while the repetition of relighting and extinction caused the oscillation of lean condition near flammable limit. From the analysis of $H_2$ content effects, it is also confirmed that the instability frequency is proportional to the laminar burning velocity at both rich and lean condition.

An Experimental Study on the Reaction Characteristics of Anode offgas Catalytic Combustor for 25kW MCFC Systems (25 kW급 MCFC 배가스 촉매연소기의 실험적 연소특성)

  • Lee, Sang Min;Woo, Hyuntack;Ahn, Kook Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.92.1-92.1
    • /
    • 2011
  • Anode off-gas of high temperature fuel cells such as MCFC contains a significant amount of combustible components like hydrogen, carbon monoxide and methane according to fuel utilization ratio of the fuel cell stack. Thus, it is important to fully burn anode off-gas and utilize the generated heat in order to increase system efficiency and reduce emissions as well. In the present study, 25 kW catalytic combustor has been developed for the application to a load-following 300kW MCFC system. Mixing and combustion characteristics have been experimentally investigated with the catalytic combustor. Since the performance of catalytic combustor directly depends on the combustion catalyst, this study has been focused on the experimental investigation on the combustion characteristics of multiple catalysts having different structures and compositions. Results show that the exhaust emissions are highly dependent on the catalyst loading and the ratio of catalytic components. Test results at load-following conditions are also shown in the present study.

  • PDF

Development of Wearable Device for Monitoring Working Environment in Pig House (양돈장 작업환경 모니터링을 위한 웨어러블 장비개발)

  • Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.71-81
    • /
    • 2020
  • Enclosed pig house are creating an environment with high concentrations of gas and dust. Poor conditions in pig farms reduce pig weight and increase disease and accidents for livestock workers. In the pig house, the high concentration of harmful gas may cause asphyxiation accidents to workers and chronic respiratory disease by long-term exposure. As pig farm workers have been aging and feminized, the damage to the health of the harsh environment is getting serious, and real-time monitoring is needed to prevent the damage. However, most of the measuring devices related to humidity, harmful gas, and fine dust except temperature sensors are exposed to high concentrations of gas and dust inside pig house and are difficult to withstand for a long time. The purpose of this study is to develop an wearable based device to monitor the hazardous environment exposed to workers working in pig farms. Based on the field monitoring and previous researches, the measurement range and basic specifications of the equipment were selected, and wearable based device was designed in terms of utilization, economic efficiency, size and communication performance. Selected H2S and NH3 sensors showed the average error of 5.3% comparing to standard gas concentrations. The measured data can be used to manage the working environment according to the worker's location and to obtain basic data for work safety warning.

A Study on Operation Characteristics of Planar-type SOFC System Integrated with Fuel Processor (연료개질기를 연계한 고체 산화물 연료전지 시스템의 운전 특성에 관한 연구)

  • Ji Hyun-Jin;Lim Sung-Kwang;Yoo Yung-Sung;Bae Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.731-740
    • /
    • 2006
  • The solid oxide fuel cell (SOFC) is expected to be a candidate for distributed power sources in the next generation, due to its high efficiency and high-temperature waste heat utilization. In this study, the 5-cell SOFC stack was operated with pure hydrogen or reformed gas at anode side and air at cathode side. When stack was operated with diesel and methane ATR reformer, the influence of the $H_2O/C,\;O_2/C$ and GHSV on performance of stacks have been investigated. The result shows that the cell voltage was decreased with the increase of $H_2O/C$ and $O_2/C$ due to the partial pressure of fuel and water, and cell voltage was more sensitive to $O_2/C$ than $H_2O/C$. Next, the dynamic model of SOFC system included with ATR reformer was established and compared with experimental data. Based on dynamic model, the operation strategy to optimize SOFC-Reformer system was suggested and simulated.