• Title/Summary/Keyword: Hydrogen trend

Search Result 153, Processing Time 0.026 seconds

Technology Characteristics of Hydrogen Storage and Its Technology Trend by the Patent Analysis (수소저장 기술특성 및 특허분석에 의한 기술동향)

  • Noh, Soon-Young;Rhee, Young-Woo;Kang, Kyung-Seok;Choi, Sang-Jin;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.90-102
    • /
    • 2008
  • Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization. There are a few different approaches for hydrogen storage technology. In this paper, characteristics of hydrogen storage technologies were analyzed from the literature survey. Also, The technology trend of hydrogen production was scrutinized based on patent analysis. In patent analysis the search range was limited to the open patents issued from 1996 to 2006. The technology trend of hydrogen storage was assessed by classifying each patent based on the publishing year, country, and the type of storage technology.

Technology Characteristics of Hydrogen Production and Its Technology Trend by the Patent Analysis (수소제조 기술특성 및 특허분석에 의한 기술동향)

  • Choi, Jae-Ho;Rhee, Young-Woo;Kang, Kyung-Seok;Choi, Sang-Jin;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.481-494
    • /
    • 2007
  • Hydrogen is clean and renewable and is recognized as a very promising energy to solve both depletion of petroleum resource and environmental problems caused by use of fossil fuels. Extensive researches have been performed worldwide on the production technologies of hydrogen. In this paper, characteristics of hydrogen production technologies were analyzed from the literature survey. Also, The technology trend of hydrogen production was scrutinized based on patent analysis. In patent analysis the search range was limited to the open patents issued from 1996 to 2005. Patents were gathered by using the key-words searching method and filtered by desirable filtering criteria. The technology trend of hydrogen production was discussed by classifying each patent based on the publishing year, country, and company, and the type of production technology.

Trend of Photo-Electrochemical Hydrogen Production Technology (광전기화학적 수소제조 기술 동향분석)

  • Han, Hye-Jung;Kang, Kyung-Seok;Baeg, Jin-Ook;Moon, Sang-Jin;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.741-748
    • /
    • 2011
  • Hydrogen is clean and renewable, and recognized as a very promising energy resource to solve both depletion of petroleum and environmental problems caused by the use of fossil fuels. Extensive researches have been performed worldwide on the production technologies of hydrogen. In this paper, the technology trend of photo-electrochemical (PEC) hydrogen production was scrutinized based on the patent and paper analysis. Open/registered patents of US, JP, EP, and KR and SCI Journals related to the PEC hydrogen production technology between 1996~2010 were reviewed. Patents and papers were gathered by using the key-words searching method and filtered by desirable filtering criteria. The technology trend was discussed by classifying each patent and paper based on the publishing year, country, and organization, and analyzing the core patents and papers.

Technology Trend for Photochemical Hydrogen Production by the Patent Analysis (특허분석에 의한 광화학적 수소제조 기술동향)

  • Moon, Sang-Jin;Kang, Kyung-Seok;Han, Hye-Jeong;Baeg, Jin-Ook;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.197-206
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photochemical method, biological method, electrolysis and thermochemical method, etc. Many researches have been widely performed for the hydrogen production method having low production cost and high efficiency. In this paper, the patents concerning the photochemical hydrogen production method were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2005. Patents were gathered by using key-words searching and filtered by filtering criteria. The patent application trend was analyzed by the years, countries, companies, and technologies.

Technology Trend of Hydrogen Storage by the Patent Analysis (국내외 수소저장기술 특허 분석을 통한 기술개발 동향)

  • Kim, Jung-Wun;Kim, Tea-Wook;Ryu, Jae-Woong;Jang, Ki-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.191-197
    • /
    • 2012
  • The hydrogen storage is one of the key technologies to achieve the successful hydrogen economy and a chain to connect hydrogen production to its utilization. In this paper, characteristics and strong candidates of hydrogen storage technologies were analyzed from the objective information of patents. Also, the hydrogen storage technology trends and gaps were assessed using statistical or qualitative analysis. In this study the patents applied in Korea, Japan, US and EU from 10 or 20 years ago to 2011 were analyzed. The result of patent analysis could be used for developing or searching for promising technology of the hydrogen storage.

Patent Trend for Hydrogen Production Technology by Steam Reforming of Natural Gas (천연가스의 수증기 개질에 의한 수소 제조 기술 특허동향)

  • Seo, Dong-Ju;Yoon, Wang-Lai;Kang, Kyung-Seok;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.464-480
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photochemical method, biological method, electrolysis and thermochemical method, etc. These days it has been widely studied for the hydrogen production method having low hydrogen production cost and high efficiency. In this paper, patents in the hydrogen production by steam reforming of natural gas were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2006. Patents were gathered by using key-words searching and extracted by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

Technology Trend for Water Electrolysis Hydrogen Production by the Patent Analysis (특허분석에 의한 수전해 수소제조 기술동향)

  • Hwang, Gab-Jin;Kang, Kyung-Seok;Han, Hye-Jung;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.95-108
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photocatalytic method, biological method, electrolysis and thermochemical method, etc. These days it has been widely studying for the hydrogen production method having low hydrogen production cost and high efficiency. In this paper, patents in the hydrogen production by water electrolysis were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2005. Patents were gathered by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

Technology Trend for Carbon Nanomaterials Hydrogen Storage by the Patent Analysis (특허분석에 의한 탄소 나노재 수소저장 기술 동향)

  • Park, Soo-Jin;Lee, Young-Seak;Kang, Kyung-Seok;Choi, Mi-Jeong;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.77-89
    • /
    • 2008
  • There are several materials for the hydrogen storage such as hydrogen storage alloy, carbon nanomaterials, non-carbon nanomaterials, compounds etc. Efficient and inexpensive hydrogen storage is an essential prerequisite for the utilization of hydrogen, one of the new and clean energy sources. Many researches have been widely performed for the hydrogen storage techniques and materials having high storage capacity and stability. In this paper, the patents concerning the carbon nanomaterial hydrogen storage method were gathered and analyzed. The search range was limited in the open patents of Korea(KR), Japan(JP), USA(US) and European Union(EP) from 1996 to 2006. Patents were gathered by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

Technology Trend for Non-carbon Nanomaterials Hydrogen Storage by the Patent Analysis (특허분석에 의한 비탄소계 나노재료 수소저장 기술 동향)

  • Lee, Jin-Bae;Kang, Kyung-Seok;Han, Hye-Jeong;Kim, Jong-Wook;Kim, Hae-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.248-259
    • /
    • 2008
  • There are several well-known materials for the hydrogen storage such as metallic alloy, carbon nanomaterials, non-carbon nanomaterials, and compounds etc. Efficient and inexpensive hydrogen storage methods are an essential prerequisite for the utilization of hydrogen, one of the new and clean energy sources. Many researches have been widely performed for the hydrogen storage techniques and materials to improve the high storage capacity and stability. In this paper, the patents concerning the non-carbon nanomaterial hydrogen storage method were collected and analyzed. The search range was limited in the open patents of Korea(KR), Japan(JP), USA(US) and European Union(EP) from 1996 to 2007. Patents were collected by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies. and technologies.

A Study on the Palladium Alloy Membrane for Hydrogen Separation (수소 정제용 팔라듐 합금 분리막 연구)

  • Woo, Byung-Il;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.232-239
    • /
    • 2009
  • This study presented the effect of membrane thickness on hydrogen permeability. Microvoids on the surface of the membrane should not exist for the exact values of hydrogen permeability. Pd-Cu-Ni hydrogen alloy membranes were fabricated by Ni powder sintering, substrate plasma pretreatment, sputtering and Cu reflow process. And this leaded to void-free surface and dense film of Pd-Cu-Ni hydrogen alloy membrane. Hydrogen permeation test showed that hydrogen permeability increased from 2.7 to $15.2ml/cm^2{\cdot}min{\cdot}atm^{0.5}$ as membrane thickness decreased from 12 to $4{\mu}m$. This represented the similar trend as a hydrogen permeability of pure palladium membrane based on solution-diffusion mechanism.