• Title/Summary/Keyword: Hydrogen sulfide emission modeling

Search Result 2, Processing Time 0.021 seconds

Mathematical and experimental study of hydrogen sulfide concentrations in the Kahrizak landfill, Tehran, Iran

  • Asadollahfardi, Gholamreza;Mazinani, Safora;Asadi, Mohsen;Mirmohammadi, Mohsen
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.572-581
    • /
    • 2019
  • The emission of hydrogen sulfide (H2S) from the Kahrizak landfill was studied. Firstly, the field measurements were conducted in the summer and winter seasons; and the samples were analyzed using Jacob method. We predicted the H2S concentrations in the downwind using AERMOD and ISCST3. According to the AERMOD, the maximum concentration of H2S in the summer and winter were 117 ㎍/㎥ and 205 ㎍/㎥ respectively. The downwind concentrations reached zero at the distance of 35 km from the leachate treatment plant. The Geometric mean bias, Geometric variance, Fractional bias, Fraction of predictions within a factor of two of the observations and Normalized mean square error for the AERMOD were 0.58, 1.35, -0.12, 1.91 and 0.042, respectively in the summer and 1.39, 1.35, -0.05, 1.46 and 0.027 in the winter; and for the ISCST3, were 0.85, 1.03, 0.02, 1.45 and 0.04 in the summer and 1.18, 1.03, 0.15, 1.16 and 0.04 in the winter. The results of the AERMOD were compared with the ISCST3 and indicated that the AERMOD performance was more suitable than the ISCST3.

CALPUFF Modeling of Odor/suspended Particulate in the Vicinity of Poultry Farms (축사 주변의 악취 및 부유분진의 CALPUFF 모델링: 계사 중심으로)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.90-104
    • /
    • 2019
  • In this study, CALPUFF modeling was performed, using a real surface and upper air meterological data to predict trustworthy modeling-results. Pollutant-releases from windscreen chambers of enclosed poultry farms, P1 and P2, and from a open poultry farm, P3, and their diffusing behavior were modeled by CALPUFF modeling with volume sources as well as by finally-adjusted CALPUFF modeling where a linear velocity of upward-exit gas averaged with the weight of each directional-emitting area was applied as a model-linear velocity ($u^M_y$) at a stack, with point sources. In addition, based upon the scenario of poultry farm-releasing odor and particulate matter (PM) removal efficiencies of 0, 20, 50 and 80% or their corresponding emission rates of 100, 80, 50 and 20%, respectively, CALPUFF modeling was performed and concentrations of odor and PM were predicted at the region as a discrete receptor where civil complaints had been frequently filed. The predicted concentrations of ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ were compared with those required to meet according to the offensive odor control law or the atmospheric environmental law. Subsequently their required removal efficiencies at poultry farms of P1, P2 and P3 were estimated. As a result, a priori assumption that pollutant concentrations at their discrete receptors are reduced by the same fraction as pollutant concentrations at P1, P2 and P3 as volume source or point source, were controlled and reduced, was proven applicable in this study. In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of P1 compared with those of point source-adopted CALPUFF modeling, were predicted similar each other. However, In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of both ammonia and $PM_{10}$ at not only P2 but also P3 were predicted higher than those of point source-adopted CALPUFF modeling. Nonetheless, the volume source-adopted CALPUFF modeling was preferred as a safe approach to resolve civil complaints. Accordingly, the required degrees of pollution prevention against ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ at P1 and P2, were estimated in a proper manner.