• Title/Summary/Keyword: Hydrogen storage alloys

Search Result 89, Processing Time 0.022 seconds

A Study on the Development of Zr-Ti-Mn-V-Ni Hydrogen Storage Alloy for Ni-MH Rechargeable Battery (Ni-MH 2차 전지용 고용량, 고성능 Zr-Ti-Mn-V-Ni계 수소저장합금의 개발에 관한 연구)

  • Kim, Dong-Myung;Jung, Jae-Han;Lee, Sang-Min;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.2
    • /
    • pp.137-145
    • /
    • 1996
  • The Zr-based $AB_2$ type Laves phase hydrogen storage alloys have some promising properties, long cycle life, high discharge capacity, as electrode materials in reversible metal hydride batteries. However, when these alloys are used as negative electrode for battery, there is a problem that their rate capabilities are worse than those of commercialized $AB_5$ type hydrogen storage alloys. In this work, we tried to develop the Zr-based $AB_2$ type Laves phase hydrogen storage alloys which have high capacity and, especially, high rate capability.

  • PDF

The Hydrogen Storage Characteristics of Ti-Zr-Cr-V Alloys (Ti-Zr-Cr-V 합금의 수소저장 특성)

  • Cho, Sung-Wook;Han, Chang-Suck;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.3
    • /
    • pp.101-110
    • /
    • 1998
  • The change of hydrogen storage characteristics by substituting zirconium for a portion of titanium in Ti-Cr-V alloys has been studied. The zirconium substitution decreased the plateau pressure and hysteresis of the PC isotherm. However, it decreased the hydrogen storage capacity and increased slopping in PC isotherm by forming $Cr_2Zr$ phase. By modifying the composition ratio of titanium to chromium, thereby suppressing the formation of $Cr_2Zr$ phase, we got an alloy having very high hydrogen storage capacity. The heat treatment of the alloys improved the flatness of plateau very much without a decrease in the maximum and the effective hydrogen storage capacities.

  • PDF

Hydriding Behavior of an Mg-xNi Alloys Prepared in Hydriding Combustion Synthesis (수소화 연소합성법을 이용한 Mg-xNi 금속수소화물의 수소저장특성에 관한 연구)

  • Kim, Ji-Ho;Choi, Duck-Kyun;Hwang, Kwang-Taek;Han, Jeong-Sub;Kim, Jin-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.2
    • /
    • pp.123-128
    • /
    • 2010
  • Hydriding combustion synthesis (HCS) can produce full hydrides of alloys and in a short time. The conventional process based on ingot metallurgy cannot produce Mg-based alloy easily with the desired composition and the cast product needs a ling activation process for the practical use of hydrogen storage. In this study, the hydriding properties of Mg-xNi (x=5, 13.5, 54.7wt.%) alloys prepared by hydriding combustion synthesis were evaluated. The hydrogen storage capacity and kinetics of HCS Mg-xNi alloys were strongly dependent on the content of Ni. The HCS Mg-13.5wt.%Ni alloy shows the hydriding behavior to reach the maximum capacity within 30 min. and the reversible $H_2$ storage of 5.3wt.% at 623 K.

Hydrogenation Characteristics of the Matrix and the Second Phases of Ti-M-V Alloys (Ti-M-V 합금의 기지 및 제 2상의 수소화 특성)

  • Cho, Sung-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.2
    • /
    • pp.97-104
    • /
    • 2003
  • The structural transitions of the matrix and the second phases of $Ti_{1.0}Mn_{0.9}V_{1.1}$ and $Ti_{1.0}Cr_{1.5}V_{1.7}$ alloys upon hydrogenation have been investigated at 293K. The effect of hydrogen isotope on their crystal structures has been also discussed. The crystal structures, Phase abundance and lattice parameters of the hydrides were determined by the Rietveld method using X-ray diffraction data. At the experimental temperature, the $Ti_{1.0}Mn_{0.9}V_{1.1}$ alloy and $Ti_{1.0}Cr_{1.5}V_{1.7}$ alloy revealed different structural transition processes upon hydrogenation although the crystal structures of these two alloys are both BCC at room temperature. The second phases such as Ti-rich phase with $NiTi_2$ structure and $\alpha$-Ti with HCP structure absorbed hydrogen at relatively low hydrogen pressures and the phase abundance remained almost constant. This means that it is desirable to decrease the amount of the second phases as far as possible in order to increase the effective hydrogen storage capacities of the alloys. The crystal structures of corresponding isotope hydrides, the phase abundance and the lattice parameters did not depend on the kind of hydrogen isotope, but only on the hydrogen content.

Structural transition of Ti-Cr-V alloys with hydrogenation and dehydrogenation and the improvement of their hydrogen storage properties by heat treatment (Ti-Cr-V 합금의 수소화-탈수소화에 따른 상천이 및 열처리에 의한 수소저장특성의 향상)

  • You, Jeong-Hyun;Cho, Sung-Wook;Shim, Gun-Choo;Choi, Good-Sun;Park, Choong-Nyeon;Choi, Jeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.125-132
    • /
    • 2006
  • The alloys which compositions were represented by the formula, $Ti_{(0.22+X)}Cr_{(0.28+1.5X)}V_{(0.5-2.5X)}$ ($0{\leq}X{\leq}0.12$), had the total hydrogen storage capacity higher than 3 wt% and the effective hydrogen storage capacity higher than 1.4 wt%. Particularly, among all the tested alloys, the $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy exhibited the best effective hydrogen storage capacity of 1.65 wt%. Furthermore, the reversible bcc${\leftrightarrow}$fcc structural transition was observed with hydrogenation and dehydrogenation, which predicted the possibility of pressure cycling. EDS analysis revealed micro-segregation, which suggested the necessity of microstructure homogenization by heat treatment. The $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy was selected for heat treatment and for other related studies. The results showed that the total and the effective hydrogen storage capacity increased to 3.7 wt% and 2.3 wt%, respectively. The flatness of the plateau region was also greatly improved and heat of hydride formation was determined to be approximately -36 kJ/mol $H_2$.

Electrochemical Properties of Laves Phase Zr-V System Hydrogen Absorbing Alloys (Zr-V계 Laves상 수소저장합금의 전기화학적 성질)

  • Park, Chan-kyo;Cho, Tae-hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.2
    • /
    • pp.51-56
    • /
    • 1997
  • The Zr-based Laves phase, $ZrV_2$ hydrogen storage alloy is not suited for the electrode of Ni-MH battery, because the binding strength of that with hydrogen is too strong although the storage capacity is high. For an application to electrode a part of V in alloys is substituted with Ni to make weaken the binding strength. The electrochemical and thermodynamic properties of Zr-V-Ni system alloys are investigated from the equilibrium potential and studied the possibility for the application to the rechargeable battery electrode.

  • PDF

Fabrication and Characteristics of 150ℓ Class Hydrogen Tank Using Hydrogen Storage Alloy (수소저항합금을 이용한 150ℓ급 수소저장용기의 제작과 특성에 관한 연구)

  • Kang, Kll-Ku;Gang, Sei-Sun;Kwon, Ho-Young;Lee, Rhim-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.2
    • /
    • pp.110-118
    • /
    • 2002
  • The hydrogen storage vessel having a good heat conductivity along with a simple structure and a low cost for these alloys was designed and manufactured, and then its characteristic properties were studied in this study. The various parts in hydrogen storage vessel consisted of copper pipes and stainless steel of 250 mesh reached the setting temperature after 4~5 minutes, which indicated that storage vessel had a good heat conductivity that was required in application. And also the storage vessel had a good property of hydrogen transport considering that the reaction time between hydrogen and rare-earth metal alloys in storage vessel was found to be within 10 min at $18^{\circ}C$ under 10 atmospheric pressure. It showed that the average capacity of discharged hydrogen volume was found to be $120{\ell}$ for $MmNi_{4.5}Mn_{0.5}$ under discharging conditions of $40^{\circ}C{\sim}80^{\circ}C$ at a constant flow rate of $5{\ell}$/min. It was found that the optimum discharging temperature for obtaining an appropriate pressure of 3atm was determined to be $60^{\circ}C$ for $MmNi_{4.5}Mn_{0.5}$ hydrogen storage alloy.

Microencapsulation of Hydrogen Storage Alloys (수소저장합금의 마이크로캡슐화)

  • Kim, Dai Ryong;Kim, Yong Cheol;Keum, Dong Uk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.1 no.1
    • /
    • pp.31-39
    • /
    • 1989
  • Although it has been well known that many metal hydrides are promising to use for hydrogen storage and other applications, some difficulties still remain. Metal hydrides, particularly in powder form, have very poor thermal conductivity. The hydrogen storage alloys degrade intrinsically or extrinsically during repeated hydriding and dehydriding. Elimination of these problems is very important in the practical applications. In order to prevent degradation and to improve the thermal conductivity, the hydrogen storage characteristics of rare-earth type alloy encapsulated with Cu or Ni by means of chemical plating have been investigated. No changes has occured in hydrogen absorption capacity and equilibrium pressure even though the alloy powder is microencapsulated. The first hydrogen absorption rate of the alloy encapsulated increased considerably comparing to uncapsulated sample. In the case of encapsulating the fine powder ($>10{\mu}m$) and subsequent compacting by $8ton/cm^2$, shape of compact is maintained regardless of hydriding and dehydriding. The degree of degradation of the alloy caused by impurity gas of CO or $O_2$ was decreased prominently by encapsulation.

  • PDF

Electrochemical Properties of Hydrogen Absorbing Ability Ti1-XZrxVNi Ti1-XZrxV0.5Ni1.5 Alloys (Ti1-XZrxVNi 및 Ti1-XZrxV0.5Ni1.5계 수소저장합금의 전기화학적 성질)

  • Cho, Tae-Hwan;Park, Chan-Kyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.2 no.1
    • /
    • pp.15-21
    • /
    • 1990
  • Nickel-hydrogen battery systems with metal hydride alloys are expected to have both higher energy density and lower pollution than nickel-cadmium cells. Nickel-hydrogen storage cells are expected to be well-suited for use in space crafts for a large capacity power storage system. Their major advantages are not only a capability of deep DOD(depth of discharge) using but also with excellent durability under excessive overcharging and overdischarging. In this study, the charge/discharge capacities, anodic polarization characteristics and durability for the continious charge/diacharge cycling of the $Ti_{1-X}Zr_XVNi$ and $Ti_{1-X}Zr_XV_{0.5}Ni_{1.5}$ alloys were measured by electrochemical method. The electrode properties of the copper or nickel plated $Ti_{1-X}Zr_XV_{0.5}Ni_{1.5}$ alloys were examined with a battery charge/discharge testing system in the temperature range of -5 to $25^{\circ}C$.

  • PDF

Change of Hydriding Properties of Gravity Cast Mg-Ni Alloys with Ni Content (Ni 첨가량에 따른 중력 주조 Mg-Ni 합금의 수소화 반응 특성의 변화)

  • Yim, C.D.;Moon, Y.M.;You, B.S.;Na, Yeong-Sang;Bae, Jong-Su
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.250-256
    • /
    • 2004
  • Magnesium and its alloys have the high potential as hydrogen storage materials because of their highest hydrogen storage capacity, low density and abundant resources. But poor kinetic properties of hydriding and dehydriding and high working temperature have limited their practical applications. In this study, the Mg-Ni binary alloys with different amount of Ni were produced by gravity casting and characterized in order to investigate the relationship between the microstructures and hydriding properties. The maximum hydrogen absorption capacity decreased, but the absorption kinetics increased with Ni content. The difference in the absorption kinetics was resulted from the differences in the sort and shape of primary solid phases and eutectic microstructure.