• 제목/요약/키워드: Hydrogen pathway

검색결과 142건 처리시간 0.027초

Anti-inflammatory Activity of 3,6,3'-Trihydroxyflavone in Mouse Macrophages, In vitro

  • Lee, Eunjung;Jeong, Ki-Woong;Shin, Areum;Kim, Yangmee
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3169-3174
    • /
    • 2014
  • Numerous studies have examined the role of flavonoids in modulating inflammatory responses in vitro. In this study, we found a novel flavonoid, 3,6,3'-trihydroxyflavone (1), with anti-inflammatory effects. Anti-inflammatory activity and mechanism of action were examined in mouse macrophages stimulated with lipopolysaccharide (LPS). Our results showed that the anti-inflammatory effects of 1 are mediated via p38 mitogen-activated protein kinase (p38 MAPK), Jun-N terminal kinase (JNK), and the extracellular-signal-regulated kinase (ERK) pathway in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Binding studies revealed that 1 had a high binding affinity to JNK1 ($1.568{\times}10^8M^{-1}$) and that the 3- and 6-hydroxyl groups of the C-ring and A-ring of 1 participated in hydrogen bonding interactions with the side chains of Asn114 and Lys55, respectively. The oxygen at the 3' position of the B-ring formed a hydrogen bond with side chain of Met111. Therefore, 1 could be a potential inhibitor of JNKs, with potent anti-inflammatory activity.

Pt를 담지한 $H_xMoO_3$촉매의 수소 이동 속도에 미치는 온도의 영향 (Effect of Temperature on $H_2$ Spillover over $Pt/H_xMoO_3$)

  • 김진걸
    • 한국산학기술학회논문지
    • /
    • 제5권2호
    • /
    • pp.114-117
    • /
    • 2004
  • 비소성 Pt/MoO₃와 200℃에서 소성한 Pt/MoO₃가 150℃에서 수소를 흡착하는 속도를 측정하였다. 소성된 Pt/MoO₃의 수소 흡착량이 비소성 Pt/MoO₃의 수소 흡착량보다 증가하는 것으로 관찰되었다. 상기 두가지 흡착 속도를 나타내는 Pt/MoO₃ 촉매에서 탈착량은 흡착량과 탈착 온도의 증가에 비례하는 것을 알 수 있었다. 또한 X-Ray Photoelectron Spectroscope(XPS) 결과로부터 Pt와 MoO₃간의 활성점에 존재하는 Cl의 존재가 수소 이동 속도를 결정하는 것으로 판단되었다.

  • PDF

활성점에 흡착된 잔존 chlorine이 $Pt/HxMoO_3$ 생성에 미치는 영향 (Effect of an Adsorbed Residual Chlorine at Adlineation Sites over Formation of $Pt/HxMoO_3$)

  • Jin Gul, Kim;Seong-Soo, Kim
    • 한국산학기술학회논문지
    • /
    • 제5권4호
    • /
    • pp.282-285
    • /
    • 2004
  • Pt/MoO₃로의 수소 이동 속도론은 소성 온도에 따라 변하는 잔존 Cl량에 의하여 영향을 받았다. 선택적 CO화학흡착 법을 사용하여 소성 온도의 증가에 다른 Pt표면적의 감소를 측정하였다. 50℃등온 실험에서 소성 후에 Cl 량의 빠른 감소 현상을 규명하기 위하여 여러 특성화 분석을 실시하였다. Pt결정 표면에서 잔존 Cl 량의 감소는 MoO₃로의 수소 공급을 증가시켰고, 수소 흡착 속도론을 조절하였다.

  • PDF

Interaction Models of Substrate Peptides and β-Secretase Studied by NMR Spectroscopy and Molecular Dynamics Simulation

  • Lee, Jee-Young;Lee, Sung-Ah;Kim, Jin-Kyoung;Chae, Chi-Bom;Kim, Yangmee
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.651-656
    • /
    • 2009
  • The formation of ${\beta}$-amyloid peptide ($A{\beta}$) is initiated from cleavage of amyloid precursor protein (APP) by a family of protease, ${\alpha}$-, ${\beta}$-, and ${\gamma}$-secretase. Sub W, a substrate peptide, consists of 10 amino acids, which are adjacent to the ${\beta}$-cleavage site of wild-type APP, and Sub M is Swedish mutant with double mutations on the left side of the ${\beta}$-cleavage site of APP. Sub W is a normal product of the metabolism of APP in the secretary pathway. Sub M is known to increase the efficiency of ${\beta}$-secretase activity, resulting in a more specific binding model compared to Sub W. Three-dimensional structures of Sub W and Sub M were studied by CD and NMR spectroscopy in water solution. On the basis of these structures, interaction models of ${\beta}$-secretase and substrate peptides were determined by molecular dynamics simulation. Four hydrogen bonds and one water-mediated interaction were formed in the docking models. In particular, the hydrogen bonding network of Sub M-BACE formed spread over the broad region of the active site of ${\beta}$-secretase (P5-P3'), and the side chain of P2- Asn formed a hydrogen bond specifically with the side chain of Arg235. These are more favorable to the cleavage of Sub M by ${\beta}$-secretase than Sub W. The two substrate peptides showed different tendency to bind to ${\beta}$-secretase and this information may useful for drug development to treat and prevent Alzheimer's disease.

Determination of Properties of Ionomer Binder Using a Porous Plug Model for Preparation of Electrodes of Membrane-Electrode Assemblies for Polymer Electrolyte Fuel Cells

  • Park, Jin-Soo;Park, Seok-Hee;Park, Gu-Gon;Lee, Won-Yong;Kim, Chang-Soo;Moon, Seung-Hyeon
    • 전기화학회지
    • /
    • 제10권4호
    • /
    • pp.295-300
    • /
    • 2007
  • A new characterization method using a porous plug model was proposed to determine the degree of sulfonation (DS) of ionomer binder with respect to the membrane used in membrane-electrode assemblies (MEAs) and to analyze the fraction of proton pathways through ionomer-catalyst combined electrodes in MEAs for polymer electrolyte fuel cells (PEFCs). Sulfonated poly(ether ether ketone) was prepared to use a polymeric electrolyte and laboratory-made SPEEK solution (5wt.%, DMAc based) was added to catalyst slurry to form catalyst layers. In case of the SPEEK-based MEAs in this study, DS of ionomer binder for catalyst layers should be the same or higher than that of the SPEEK membrane used in the MEAs. The porous plug model suggested that most of protons were via the ionomer binder (${\sim}92.5%$) bridging the catalyst surface to the polymeric electrolyte, compared with the pathways through the alternative between the interstitial water on the surface of ionomer binder or catalyst and the ionomer binder (${\sim}7.3%$) and through only the interstitial water on the surface of ionomer or catalyst (${\sim}0.2%$) in the electrode of the MEA comprising of the sulfonated poly(ether ether ketone) membrane and the 5wt.% SPEEK ionomer binder. As a result, it was believed that the majority of proton at both electrodeds moves through ionomer binder until reaching to electrolyte membrane. The porous plug model of the electrodes of MEAs reemphasized the importance of well-optimized structure of ionomer binder and catalyst for fuel cells.

화학적 허혈에 의해 손상된 마우스 간세포에 대한 hydrogen sulfide의 간세포 보호 효과 (Protection of Primary Cultured Mouse Hepatocytes from Chemical Hypoxia-induced Injury by Hydrogen Sulfide)

  • 이민영
    • 생명과학회지
    • /
    • 제23권11호
    • /
    • pp.1342-1350
    • /
    • 2013
  • 본 연구는 화학적 허혈에 의해 손상된 마우스 간세포에서 hydrogen sulfide ($H_2S$)의 효과를 규명하기 위해 수행되었다. 본 연구에서 허혈 모방 화합물로 알려져 있는 cobalt chloride ($CoCl_2$)는 간세포 손상을 시간 및 농도 의존적으로 유의성 있게 증가 시켰다. $CoCl_2$에 의한 간세포 손상은 Sodium sulfide (NaHS, $H_2S$ 공여제)의 전처리에 의해 유의적으로 감소 되었다. $CoCl_2$는 세포 내 활성산소(reactive oxygen species, ROS)의 농도를 증가시켰으며, 이는 NaHS 및 N-acetyl-cysteine (NAC, a ROS 제거제)에 의해 감소하였다. 또한, $CoCl_2$에 의해 증가된 p38 MAPK 인산화가 NaHS 및 NAC에 의해 억제되었다. $CoCl_2$에 의해 증가된 Bax/Bcl-2 비율은 NaHS, NAC 및 SB 203580 (p38 MAPK 저해제)에 의해 차단되었으며, $CoCl_2$에 의해 유발된 간세포의 손상 또한 NaHS, NAC 및 SB 203580의 전처리에 의해 억제되었다. NaHS는 $CoCl_2$에 의해 증가된 COX-2의 발현을 억제하였다. 또한, NaHS의 효과와 유사하게 $CoCl_2$에 의해 증가된 COX-2의 발현이 NAC에 의해 억제되었다. 더욱이, NS-398 (COX-2 선택적 억제제)는 $CoCl_2$에 의한 Bax/Bcl-2 비율의 증가를 억제하였을 뿐 아니라, 간세포의 세포 손상 또한 억제하였다. 결론적으로, $H_2S$는 초대배양 된 마우스 간세포에서 $CoCl_2$에 의해 유발된 간세포의 손상을 ROS에 의해 유발된 p38 MAPK 및 COX-2 경로의 활성화를 억제함으로써 세포보호효과를 수행하는 것을 알 수 있었다.

Modulation of Phosphoenolpyruvate Metabolism of Anaerobiospirillum succiniciproducens ATCC 29305

  • Yoo, Jin Young;J. Gregory Zeikus
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권1호
    • /
    • pp.43-49
    • /
    • 1996
  • Modulation of the catabolic PEP-pathway of Anaerobiospirillum succiniciproducens was tried using some enzymatic inhibitors such as gases and chemicals in order to enhance succinic acid production. 10$\%$ CO increased the succinic acid/acetic acid (S/A) ratio but inhibited growth as well as production of succinic and acetic acid. Hydrogen gas also increased the S/A ratio and inhibited the synthesis of pyruvate: ferredoxin oxidoreductase when used in mixture with $CO_2$, Catabolic repression by acetic, lactic and formic acid was not recognized and other modulators such as glyoxylate, pyruvate derivatives, arsenic salt, phosphate and sulfate were shown not to be effective. Magesium carbonate was shown effective for repressing acetate production. Palmitic acid, myristic acid and phenylalanine did not affect acetate production but carprylic acid completely inhibited growth.

  • PDF

Kinetics and Mechanism of the Anilinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2306-2310
    • /
    • 2011
  • The nucleophilic substitution reactions of diethyl thiophosphinic chloride with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at 55.0 $^{\circ}C$. The values of deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) invariably increase from secondary inverse ($k_H/k_D$ < 1) to primary normal (kH/kD > 1) as the nucleophiles change from the strongly basic to weakly basic anilines. The secondary inverse with the strongly basic anilines and primary normal DKIEs with the weakly basic anilines are rationalized by the gradual transition state (TS) variation from a predominant backside attack, via invariably increasing the fraction of a frontside attack, to a predominant frontside attack, in which the reaction mechanism is a concerted $S_N2$ pathway. A frontside attack involving a hydrogen bonded, four-center-type TS is substantiated by the primary normal DKIEs.

Theoretical Studies on the Gas-Phase Pyrolysis of Carbonate Esters, Hydroxy-Esters and -Ketones

  • Lee, Ik-Choon;Cha, Ok-Ja;Lee, Bon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권1호
    • /
    • pp.97-101
    • /
    • 1991
  • Gas-phase pyrolyses of carbonate esters, ${\alpha}$- and ${\beta}$-hydroxy esters and ${\beta}$-hydroxy ketones have been studied theoretically by the AM1 MO method. Carbonate esters were found to decompose by two types of processes; in the reaction pathway involving an intermediate, the decomposition of the intermediate was rate-limiting, but direct pyrolyses were also possible via a six-membered cyclic transition state in which the methoxy oxygen attacks a hydrogen atom on the ${\beta}$-carbon. The hydroxy esters and ketones were found to decompose in a concerted process involving a six-membered cyclic transition state. Successive methylation on the ${\alpha}$- and ${\gamma}$-carbon led to an increase in the reactivity in agreement with experiments.

The Role of Sphingolipids Cycle in Hydrogen Peroxide-Induced Apoptosis in HL-60 Cells

  • Son , Jung-Hyun;Lee, Jae-Ick;Yang , Ryung;Kim, Dong-Hyun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.213.1-213.1
    • /
    • 2003
  • Sphingolipids and their metabolites are highly bioactive molecules that affect various cellular functions including differentiation, cellular senescence, apoptosis, and proliferation when added exogenously, or elevated intracellularly by turnover of complex sphingolipids or synthesis from de novo pathway. We are investigating the relationship of sphingolipids cycle in apoptosis early events. A new column liquid chromatography- tandem mass spectrometry (LC/MS/MS) in combination with multiple reaction monitoring (MRM) method was developed for the rapid, simultaneous and quantitative determination of unambiguous detecting sphingolipids in cells. (omitted)

  • PDF