• Title/Summary/Keyword: Hydrogen isotope effect

Search Result 42, Processing Time 0.017 seconds

Effect of Well Depth, Host Rocks and Mineralization Zone on Hydrochemical Characteristics of Groundwater in the Umsung Area (음성지역 지하수의 수리화학적 특성에 대한 심도, 모암 및 광화대의 영향)

  • Jeong Chan Ho;Lee Byung Dae;Sung Ig hwan;Cho Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.469-485
    • /
    • 2004
  • The purpose of this study is to investigate the hydrochemical characteristics of groundwater in the Umsung area, and to elucidate the effect of host rock type, well depth and mineralization zone on the groundwater chemistry. The geology of the study area consists of Jurassic granite and Cretaceous sedimentary rocks, which are bounded by a fault. Most of shallow groundwaters exploited in the Jurassic granite area are used for agricultural purpose, whereas the deep groundwaters in the Cretaceous sedimentary rocks are used for a drinking water. The shallow groundwater shows weak acidic pH, the electrical conductivity ranging from $142\;to\;903\;{\mu}S/cm$, and the chemical type of $Ca-HCO_3\;to\;Ca-Cl(SO_4,\;NO_3)$. A few of shallow groundwaters are contaminated by nitrate, and show high concentration of Fe, Mn and Zn, that reflects the effect of a mineralization zone. The deep groundwater shows neutral to weak alkaline pH, higher electrical conductivity than that of shallow groundwater, and the chemical type of $Ca-HCO_3$. The seepage water from the abandoned mines does not have the characteristics such as acidic pH, high concentration of heavy metals and high sulfate content. The hydrogen and oxygen isotopes of groundwater indicates an altitude effect of the recharge area between deep groundwater and shallow groundwater. In conclusion, the chemical composition of groundwater complicately reflects the effects of their host rocks, well depth, agricultural activity and mineralization zone in the study area.

Photochemistry of Benzanilide I Photocyclization of Benzanilides (벤즈아닐리드류의 광화학 (제1보). 벤즈아닐리드류의 광고리화 반응)

  • Yong-Tae Park;Sang-Rok Do;Kap-Duk Lee
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.426-436
    • /
    • 1985
  • Preparative and kinetic photochemical reactions of several benzanilides were studied. Several substituted benzanilides were synthesized by acylation of substituted anilines with substituted benzoyl chlorides. While benzanilide gave a photo-Fries type reaction product, 2-chlorobenzaniline, 2-bromobenzanilide, and 2-methoxybenzanilide gave a photocyclization reaction product, phenanthridone. Since 8-chlorophenanthridone was obtained from 2,2'-dichlorobenzanilide, the carbonyl phenyl is the excited site. Quantum yield of photocyclization of 2-chlorobenzanilide, 2'-chlorobenzanilide, and 2-methoxybenzanilide were obtained. 2-Chlorobenzanilide was photocyclized effectively and 2'-chlorobenzanilide ineffectively. Since the oxygen present in the reaction medium retarded the photocyclization reaction of 2-chlorobenzanilide, the triplet state of 2-chlorobenzanilide is involved. The mechanism of the photocyclization of 2-chlorobenzanilide is suggested: $\pi-complex$ between carbonyl phenyl and N-phenyl was formed from the triplet state of 2-chlorobenzanilide; neighbour phenyl (N-phenyl) assists for leaving of chlorine from carbonyl phenyl to make an intermediate, cyclized conjugated radical, because electron donating group on the N-phenyl ring accelerated the reaction; hydrogen detachment from the intermediate is obviously not a rate determined step because there was no isotope effect on the rate of photocyclization. The photocyclization reaction rate of 2-methoxybenzanilide was faster in the presence of oxygen than in the absence of oxygen. Thus, the singlet excited state of 2-methoxybenzanilide is involved in the reaction. Probably, the intermediate, methoxyhydro-phenanthridone is oxidized by oxygen in the medium to give phenanthridone.

  • PDF