• Title/Summary/Keyword: Hydrogen effect

Search Result 2,872, Processing Time 0.032 seconds

Hydrogen Peroxide Generation of DSA for Electro-Fenton Reaction and Removal of Rhodamine B (Electro-Fenton 반응을 위한 불용성 전극의 과산화수소 생성과 Rhodamine B의 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.2
    • /
    • pp.175-182
    • /
    • 2008
  • This study investigates the optimal conditions for electrogenerated hydrogen peroxide production and the application of the electro-Fenton process using DSA electrodes. The influences of parameters for the hydrogen peroxide generation such as electrode materials, electrolyte concentration, current, pH, air flow rate and electrode distance were investigated using a laboratory scale batch reactor. The relative performance for hydrogen peroxide generation of each of the six electrodes is : Ru-Sn-Ti > Ru-Sn-Sb > Ru > Ir > Pt > Sn-Sb. Optimum NaCl dosage, current and air flow rate were 2.0 g/l, 12.5 A and 2 l/min, respectively. When the pH is low, hydrogen peroxide concentration was high. Electrode distance dos not effect to a hydrogen peroxide generation. A complete color removal was obtained for RhB (200 mg/l) at the 8 min mark of the electro-Fenton process under optimum operation conditions of $Fe^{2+}$ 0.105 g/l and 5.0 A. The electro-Fenton process increased initial reaction and decreased final reaction time. However the effect was not high.

Hydrogen Effect on the Oxidation of Zr-Alloy Claddings under High Temperature (수소화물에 의한 Zr 합금의 고온산화 가속효과)

  • Jung, Yunmock;Ha, Sungwoo;Park, Kwangheon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.389-394
    • /
    • 2016
  • The operation method of nuclear power plants is currently changing to high burn-up and long period that can enhance economics and efficiency of the plant. Since nuclear plant operation environment has been becoming severe, the amount of absorbed hydrogen also has increased. Absorbed hydrogen can be fatal securing safety of nuclear fuel cladding in case of Loss of Coolant Accidents(LOCA). In order to examine the impact of hydride on high-temperature oxidation, high-temperature oxidation experiment was performed on normal Zry-4 cladding and on Zry-4 cladding where hydrogen is charged in air pressure steam atmosphere under the $950^{\circ}C$ and $1000^{\circ}C$. According to the results, while oxidation acceleration due to charged hydrogen was not observed prior to breakaway oxidation creation, oxidation began to accelerate in cladding where hydrogens charged as soon as the breakaway oxidation started. If so much hydrogen are charged in the cladding, equiaxial monoclinic phase to unstable of stress is formed and it is presumed that oxidation is accelerated because nearby stress caused a crack in equiaxial phase, and that makes corrosion resistance decline sharply.

A mechanistic analysis of H2O and CO2 diluent effect on hydrogen flammability limit considering flame extinction mechanism

  • Jeon, Joongoo;Kim, Yeon Soo;Jung, Hoichul;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3286-3297
    • /
    • 2021
  • The released hydrogen can be ignited even with weak ignition sources. This emphasizes the importance of the hydrogen flammability evaluation to prevent catastrophic failure in hydrogen related facilities including a nuclear power plant. Historically numerous attempts have been made to determine the flammability limit of hydrogen mixtures including several diluents. However, no analytical model has been developed to accurately predict the limit concentration for mixtures containing radiating gases. In this study, the effect of H2O and CO2 on flammability limit was investigated through a numerical simulation of lean limit hydrogen flames. The previous flammability limit model was improved based on the mechanistic investigation, with which the amount of indirect radiation heat loss could be estimated by the optically thin approximation. As a result, the sharp increase in limit concentration by H2O could be explained by high thermal diffusivity and radiation rate. Despite the high radiation rate, however, CO2 with the lower thermal diffusivity than the threshold cannot produce a noticeable increase in heat loss and ultimately limit concentration. We concluded that the proposed mechanistic analysis successfully explained the experimental results even including radiating gases. The accuracy of the improved model was verified through several flammability experiments for H2-air-diluent.

Hydrogen Aging During Hole Expanding Tests of Galvanized High Strength Steels Investigated Using a Novel Thermal Desorption Analyzer for Small Samples

  • Melodie Mandy;Maiwenn Larnicol;Louis Bordignon;Anis Aouafi;Mihaela Teaca;Thierry Sturel
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.145-153
    • /
    • 2024
  • In the automotive industry, the hole expanding test is widely used to assess the formability of punched holes in sheets. This test provides a good representation of formability within the framework defined by the ISO 16630 standard. During hole expanding tests on galvanized high strength steels, a negative effect was observed when there was a delay between hole punching and expansion, as compared to performing both operations directly. This effect is believed to be caused by hydrogen aging, which occurs when hydrogen diffuses towards highly-work hardened edges. Therefore, the aim of this study is to demonstrate the migration of hydrogen towards work-hardened edges in high strength Zn-coated steel sheets using a novel Thermal Desorption Analyzer (TDA) designed for small samples. This newly-developed TDA setup allows for the quantification of local diffusible hydrogen near cut edges. With its induction heating and ability to analyze Zn-coated samples while reducing artifacts, this setup offers flexible heat cycles. Through this method, a hydrogen gradient is observed over short distances in shear-cut galvanized steel sheets after a certain period of time following punching.

Protective Effects of Cornu Saigae Tataricae Extracts on Cultured Spinal Motor Neurons Damaged by Oxygen Free Radical (산소자유기에 의한 척수운동세포 독성에 대한 영양각 추출물의 방어효과)

  • Kang Gil Seong;Kwon Kang Beom;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1202-1207
    • /
    • 2003
  • In order to clarify the neuroprotective effect of Cornu Saigae Tataricae(CST) water extract on cultured mouse spinal motor neuron damaged by hydrogen peroxide (H₂O₂), MTT [3-(4,5-dimethylthiazole-2-yl)- 2,5-diphenyltetrazolium bromide] assay, LDH (Lactate Dehydrogenase) activity assay and SRB (Sulforhodamine B) assay were carried out after the cultured mouse spinal motor neuron were preincubated with various concentrations of CST water extract for 3 hours prior to exposure of hydrogen peroxide Cell viability of cultured mouse spinal motor neurons exposed to various concentrations of hydrogen peroxide for 6 hours was decreased in a dose-dependent manner. MTT50 values were 40 uM hydrogen peroxide. Cultured mouse spinal motor neurons in the medium containing various concentration of hydrogen peroxide for 6 hours showed increasing of LDH activity and decreasing of total protein synthesis. We know that hydrogen peroxide was toxic on cultured spinal motor neurons. Pretreatment of CST water extract for 3 hours following hydrogen peroxide prevented the hydrogen peroxide-induced neurotoxicity such as increasing of LDH activity and decreasing of total protein synthesis. These results suggest that hydrogen peroxide shows toxic effect on cultured spinal motor neurons and CST water extract is highly effective in protecting the neurotoxicity induced by hydrogen peroxide.

Hydrogen shallow donors in ZnO and $SnO_2$ thin films prepared by sputtering methods

  • Kim, Dong-Ho;Kim, Hyeon-Beom;Kim, Hye-Ri;Lee, Geon-Hwan;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.145-145
    • /
    • 2010
  • In this paper, we report that the effects of hydrogen doping on the electrical and optical properties of typical transparent conducting oxide films such as ZnO and $SnO_2$ prepared by magnetron sputtering. Recently, density functional theory (DFT) calculations have shown strong evidence that hydrogen acts as a source of n-type conductivity in ZnO. In this work, the beneficial effect of hydrogen incorporation on Ga-doped ZnO thin films was demonstrated. It was found that hydrogen doping results a noticeable improvement of the conductivity mainly due to the increases in carrier concentration. Extent of the improvement was found to be quite dependent on the deposition temperature. A low resistivity of $4.0{\times}10^{-4}\;{\Omega}{\cdot}cm$ was obtained for the film grown at $160^{\circ}C$ with $H_2$ 10% in sputtering gas. However, the beneficial effect of hydrogen doping was not observed for the films deposited at $270^{\circ}C$. Variations of the electrical transport properties upon vacuum annealing showed that the difference is attributed to the thermal stability of interstitial hydrogen atoms in the films. Theoretical calculations also suggested that hydrogen forms a shallow-donor state in $SnO_2$, even though no experimental determination has yet been performed. We prepared undoped $SnO_2$ thin films by RF magnetron sputtering under various hydrogen contents in sputtering ambient and then exposed them to H-plasma. Our results clearly showed that the hydrogen incorporation in $SnO_2$ leads to the increase in carrier concentration. Our experimental observation supports the fact that hydrogen acting as a shallow donor seems to be a general feature of the TCOs.

  • PDF

Effect of Wogonin on Intracellular Hydrogen Peroxide Production of TM4 Mouse Sertoli cells stressed with polyinosinic:polycytidylic acid (우고닌(Wogonin)이 poly I:C로 유발된 TM4세포 내 하이드로겐퍼록사이드 생성에 미치는 영향)

  • Park, Wansu
    • The Korea Journal of Herbology
    • /
    • v.36 no.5
    • /
    • pp.117-123
    • /
    • 2021
  • Objectives : The aim of this study is to investigate the effect of wogonin on the production of hydrogen peroxide in polyinosinic:polycytidylic acid (poly I:C)-stimulated TM4 mouse sertoli cells. Methods : TM4 were treated with poly I:C (50 ug/mL) and wogonin at concentrations of 5, 10, 25, and 50 µM for 30 min, 2 hr, 12 hr, 18 hr, and 24 hr. The production of intracellular hydrogen peroxide was measured by dihydrorhodamine 123 assay. Results : For 30 min, 2 hr, 12 hr, 18 hr, and 24 hr treatment, wogonin significantly inhibited intracellular hydrogen peroxide productions of TM4 at the concentration of 5, 10, 25, and 50 µM (p<0.05). In details, production of hydrogen peroxide in poly I:C-stimulated TM4 treated for 30 min with wogonin at concentrations of 5, 10, 25, and 50 µM was 95.67%, 92.69%, 92.05%, and 91.97% of the control group treated with poly I:C only, respectively; the production of hydrogen peroxide for 2 hr was 94.44%, 94.41%, 93%, and 92.98%, respectively; production of hydrogen peroxide for 12 hr was 96.78%, 95.32%, 94.33%, and 93.17%, respectively; production of hydrogen peroxide for 18 hr was 94.7%, 93.4%, 93.38%, and 93.35%, respectively; and production of hydrogen peroxide for 24 hr was 95.75%, 94.77%, 94.58%, and 92.8%, respectively. Conclusions : Wogonin might have anti-viral property related with its inhibition of intracellular hydrogen peroxide production in poly I:C-stimulated TM4 cells.

A Basic Study on Effect Analysis of Adjacent Structures due to Explosion of Underground Hydrogen Infrastructure (지하 수소인프라 폭발에 따른 인접 구조물 영향 분석에 대한 기초 연구)

  • Choi, Hyun-Jun;Kim, Sewon;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.21-27
    • /
    • 2022
  • For carbon neutrality, interest in R&D and infrastructure construction for hydrogen energy, an eco-friendly energy source, is growing worldwide. In particular, for hydrogen stations installed in downtown areas, underground hydrogen infrastructure are being considered to increase a safety distance from hydrogen tank explosions to adjacent structures. In order to design an appropriate location and depth of the underground hydrogen infrastructure, it is necessary to evaluate the impact of the explosion of the underground hydrogen infrastructure on adjacent structures. In this paper, a numerical model was developed to analyze the effect of the underground hydrogen infrastructure explosion on adjacent structures, and the over pressure of the hydrogen tank was evaluated using the equivalent TNT (Trinitrotoluene) model. In addition, parametric analysis was performed to estimate the stability of adjacent structures according to the construction conditions of the underground hydrogen infrastructure.

A Study on the Thermal Characteristics of High Pressure Hydrogen Storage Tank according to Nozzle Angle and Length/Diameter Ratio (고압수소 저장용기의 노즐 각도 및 길이/직경비에 따른 열적 특성 연구)

  • JEONG HWAN YOON;JUNYEONG KWON;KYUNG SOOK JEON;JIN SIK OH;SEUNG JUN OH
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.431-438
    • /
    • 2023
  • Recently, study on hydrogen is being conducted due to environmental pollution and fossil fuel depletion. High-pressure gas hydrogen commonly used is applied to vehicle and tube trailers. In particular, high-pressure hydrogen storage tank for vehicles must comply with the guidelines stipulated in SAE J2601. There is a charging temperature limitation condition for the safety of the storage tank material. In this study, numerical analysis method were verified based on previous studies and the nozzle angle was changed for thermal management to analyze the increase in forced convection effect and energy uniformity due to the promotion of circulation flow. The previously applied high-pressure hydrogen storage tank has a length/diameter ratio of about 2.4 and was analyzed by comparing the length/diameter ratio with 8. As a result, the circulation flow of hydrogen flowing into the high-pressure hydrogen storage tank is promoted at a nozzle angle of 30° than the straight nozzle and accordingly, the effect of suppressing temperature rise by energy uniformity and forced convection was confirmed.

Kinetic Study of pH Effects on Biological Hydrogen Production by a Mixed Culture

  • Jun, Yoon-Sun;Yu, Seung-Ho;Ryu, Keun-Garp;Lee, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1130-1135
    • /
    • 2008
  • The effect of pH on anaerobic hydrogen production was investigated under various pH conditions ranging from pH 3 to 10. When the modified Gompertz equation was applied to the statistical analysis of the experimental data, the hydrogen production potential and specific hydrogen production rate at pH 5 were 1,182 ml and 112.5 ml/g biomass-h, respectively. In this experiment, the maximum theoretical hydrogen conversion ratio was 22.56%. The Haldane equation model was used to find the optimum pH for hydrogen production and the maximum specific hydrogen production rate. The optimum pH predicted by this model is 5.5 and the maximum specific hydrogen production rate is 119.6 ml/g VSS-h. These data fit well with the experimented data($r^2=0.98$).