• 제목/요약/키워드: Hydrogen content

검색결과 865건 처리시간 0.033초

플라스틱 및 바이오매스의 촉매 열분해에 의한 수소 생성 특성 (Characteristics of Hydrogen Production by Catalytic Pyrolysis of Plastics and Biomass)

  • 최선용;이문원;황훈;김래현
    • 에너지공학
    • /
    • 제19권4호
    • /
    • pp.221-227
    • /
    • 2010
  • 본 연구에서는 바이오매스 및 플라스틱에 가스화 효율을 높이기 위한 탄산염 촉매 또는 Ni based 촉매를 혼합한 시료에 대하여, 고정층 반응기를 이용하여 급속 등온 열분해 실험을 수행하여, 생성된 가스의 온도, 시료 및 촉매의 영향에 관한 분석을 통하여, 최적의 수소 생성 수율을 얻고자 한다. 고위발열량 측정 결과, 바이오매스보다 플라스틱 폐기물의 발열량이 높아짐을 알 수 있었다. 원소분석 결과로부터 수소 함량은 플라스틱 시료가 더 높았다. 계산된 활성화 에너지는 촉매 적용에 의해 감소하였고, 5 wt% 이상의 경우에는 큰 변화를 보이지 않았다. 수소수율은 플라스틱 폐기물이 포함된 시료, 온도에 대해서는 대부분 높은 온도 범위에서 최대값이 얻어졌다. 또한 대부분의 시료에서 높은 혼합비를 갖는 조건의 수소수율이 가장 높은 결과를 보였으나, 5 wt% 이상의 조건에서는 촉매 혼합비 증가의 영향은 미비하여, 활성화 에너지의 결과와 잘 일치함을 확인하였다. 전체적으로 촉매 반응이 무촉매 반응에 비하여 높은 수소수율이 얻어졌다. 촉매 종류에 대하여, 탄산염 촉매인 $Na_2CO_3$$K_2CO_3$보다 Ni-$ZrO_2$ 촉매가 수소 생산을 위한 목적에 더 적합한 촉매임을 확인하였고, 본 연구로부터의 최대 수소수율을 위한 조건은 $900^{\circ}C$, 20 wt%의 Ni-$ZrO_2$(1:9) 촉매가 혼합된 Pitch Pine, Polyethylene 시료에 대하여 65.9 vol%의 높은 수소수율의 결과를 얻었다.

EVALUATION OF HYDROGEN INDUCED DISBONDING FOR CR-MO-V STEEL/AUSTENITIC STAINLESS OVERLAY

  • Kim, Byung-Hoon;Kim, Dong-Jin;Kim, Jeong-Tae
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.211-216
    • /
    • 2002
  • To investigate transition region in welded overlay relating to disbonding crack, the effect of vanadium addition on disbonding of Cr-Mo steels overlay welded with austenitic stainless steel was studied. V modified Cr-Mo steels have a higher resistance to disbonding than V free Cr-Mo steel. One reason is due to the fact that fine vanadium carbide precipated in base metal traps hydrogen and thus decreases the susceptibility to the disbonding. The second is related to the higher stability of the vanadium and stable carbides formed during PWHT, in which the carbon diffusion to the interface is lower than for V free Cr-Mo steel. Decreasing the carbon content at the interface of the weld overlay shows good resistance to the disbonding. Hence, it is important to control the carbon content at the interface of the weld overlay.

  • PDF

불포화 자연토의 동전기 시스템에 따른 정화 특성 (The Remediation Characteristics of Natural Soil according to ElectroKinetic Remediation Systems under Unsaturated Conditions)

  • 김병일;김기년;한상재;김수삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.873-881
    • /
    • 2004
  • A serious of EK remediation tests on contaminated soil are performed under unsaturated conditions and analyzed for electrical potential, water content, pH and so on. The results indicated that electrical potential and pH distributions in the sample are dependent on the amount and inward/outward flow of hydrogen ion. Specially, for the closed system the water content is largely decreased with the flow of hydrogen. The maximum electrical conductivity is measured at the catholyte of CEM(Sealing) test and directly related to the remedial efficiency. Although pHs in the region near to the anode are similarly developed, the different concentration of lead is measured with the electrical gradient contrary to the lead concentration dependent on pH within the sample.

  • PDF

Solid-State High-Resolution 1H-NMR Study for Ammonia Borane of Hydrogen Storage Material

  • Han, J.H.;Lee, Cheol-Eui;Kim, Se-Hun;Kim, Chang-Sam;Han, Doug-Young
    • 한국자기공명학회논문지
    • /
    • 제14권1호
    • /
    • pp.38-44
    • /
    • 2010
  • In liquids NMR, $^{1}H$ is the most widely observed nucleus, which is not the case in solids NMR. The reason is due to the strong homo-dipolar interactions between the hydrogen atoms which mask the useful chemical shift information. Therefore we must remove the strong homo-dipolar interactions in order to get structural information, which can be investigated by the isotropic chemical shift. There are two ways of obtaining it. One is the ultra-fast MAS of ca. 70 kHz spinning speed, which has become available only recently. The other way is devising a pulse sequence which can remove the strong homo-dipolar interaction. In the latter way, MAS with a moderate spinning rate of a few kHz, is enough to remove the chemical shift anisotropy. In this report, 1D-CRAMPS and 2D MASFSLG techniques are utilized and their results will be compared. This kind of highresolution $^{1}H$ NMR for solids, should become a valuable analytical tool in the understanding and the developing of a new class of hydrogen storage materials. Here ammonium borane $-NH_{3}BH_{3}$, whose hydrogen content is high, is used as a sample.

V22Ti16Zr16Ni39X7(X=Cr, Co, Fe, Mn, Al) 금속수소화물전극에 관한 연구 (A Study on the V22Ti16Zr16Ni39X7(X=Cr, Co, Fe, Mn, Al) Metal Hydride Electrodes)

  • 김정선;조원일;조병원;윤경석;김상주
    • 한국수소및신에너지학회논문집
    • /
    • 제5권1호
    • /
    • pp.1-8
    • /
    • 1994
  • Lattice structure, hydrogen absorption characteristics, discharge capacity and cycle life of $V_{22}Ti_{16}Zr_{16}Ni_{39}X_7$(X= Cr, Co, Fe, Mn, Al) alloys were investigated. The matrix phases of these alloys were the C14 Laves phase. Chromium-containing alloy had a vanadium-rich phase in addition to the Laves phase. The chromium, maganese, or aluminum-containing alloys had lower hydrogen equilibrium pressure and larger hydrogen absorption content than the cobalt or iron-containing alloys. The discharge capacities of these alloys were 270~330mAh/g. The discharge capacity according to the alloying element X decreased in the order of Mn>Cr>Co, Al)Fe. The charge/discharge cycle lives of the chromium, cobalt or iron-containing alloys were longer than those of maganese or aluminum-containing alloys due to the lower vanadium dissolution rate.

  • PDF

과일폐기물을 이용한 바이오에탄올 생산에 관한 연구 (A Study on Bio-ethanol Production from Fruit Wastes)

  • 박세준;도윤호;최정식;윤영훈;차인수
    • 한국수소및신에너지학회논문집
    • /
    • 제20권2호
    • /
    • pp.142-150
    • /
    • 2009
  • This paper presents bio-ethanol production from fruit wastes as it possibly alternate fossil fuel in the future. To illustrate the component ratio in exocarps of fruit wastes such as pears, apples, and persimmons, the amount of moisture, lignin, $\alpha$, $\beta$, $\gamma$-cellulose, and ash content were respectively examined by the ingredient analysis. Also, the amount of the glucose obtained from the enzyme hydrolysis using the axocarps was investigated. It was found in our results that the energy efficient process requires different temperature conditions for the saccharification step($50^{\circ}C$ and the fermentation step($30^{\circ}C$ in ethanol synthesis.

수소화 연소합성법을 이용한 Mg-xNi 금속수소화물의 수소저장특성에 관한 연구 (Hydriding Behavior of an Mg-xNi Alloys Prepared in Hydriding Combustion Synthesis)

  • 김지호;최덕균;황광택;한정섭;김진호
    • 한국수소및신에너지학회논문집
    • /
    • 제21권2호
    • /
    • pp.123-128
    • /
    • 2010
  • Hydriding combustion synthesis (HCS) can produce full hydrides of alloys and in a short time. The conventional process based on ingot metallurgy cannot produce Mg-based alloy easily with the desired composition and the cast product needs a ling activation process for the practical use of hydrogen storage. In this study, the hydriding properties of Mg-xNi (x=5, 13.5, 54.7wt.%) alloys prepared by hydriding combustion synthesis were evaluated. The hydrogen storage capacity and kinetics of HCS Mg-xNi alloys were strongly dependent on the content of Ni. The HCS Mg-13.5wt.%Ni alloy shows the hydriding behavior to reach the maximum capacity within 30 min. and the reversible $H_2$ storage of 5.3wt.% at 623 K.