• Title/Summary/Keyword: Hydrogen behavior

Search Result 700, Processing Time 0.026 seconds

An Analysis of Small Punch Test Conducted with the High Strength Dual Phase Sheet Steels Charged with Hydrogen (수소주입된 고강도 DP 박강판의 소형펀치시험결과 분석)

  • Choi, Young-Cheul;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.229-233
    • /
    • 2013
  • The small punch(SP) tests that can be applied to high strength sheet steel in automobile were carried out to evaluate the behavior of hydrogen embrittlement of DP sheet steels. In order to charge hydrogen at DP sheet steels, DP sheet steels were treated by the electrochemical hydrogen charging method under the charging conditions of current densities of 100, 150 and 200 $mA/cm^2$ for charging times of 5, 10, 25 and 50 hrs. Respectively, After hydrogen charging with experimental conditions, SP tests were performed. From the SP results, the correlations between the variation of bulb diameters and bulb heights with the hydrogen charging conditions were analysed. It was shown that the variation of bulb diameters were not significant with the hydrogen embrittlement due to the amounts of hydrogen charging. On the other hand, the bulb heights were observed to decrease with increasing hydrogen contents. It was thought that these results of the variation of bulb shapes after SP tests would be estimated as the index of evaluation of hydrogen embrittlement.

The Fabrication of MggTi1-(10, 20 wt%)Ni Hydrogen Absorbing Alloys by Hydrogen Induced Mechanical Alloying and Evaluation of Hydrogenation Properties(Part II : Evaluation of Pressure-Composition-Isotherm Properties) (수소 가압형 기계적 합금화법을 이용한 MggTi1-(10, 20 Wt%)Ni 수소저장합금의 제조와 수소화 특성 (제 2보 : 압력-조성-등온 특성 평가))

  • Hong, Tae-Whan;Kim, Gyeong-Bum;Kim, Yeong-Jig
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.270-278
    • /
    • 2002
  • Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and high absorption capacity. Their range of applications could be further extended if their hydrogenation properties and degradation behavior could be improved, The main emphasis of this study was to find an economic manufacturing method for Mg-Ti-Ni-H systems, and to investigate their hydrogenation properties, In order to examine hydrogenation behavior, a Sieverts type automatic pressure-composition-isotherm(PCI) apparatus was used and the experiments were performed at 423, 473, 523, 573, 623 and 673K. The results of thermogravimetric analysis(TGA) reveal that the absorbed hydrogen contents are around 2.5 wt% for ($Mg_9Ti_1$)-10 wt% Ni. With increased Ni content, the absorbed hydrogen content decreases to 1.7 wt%, whereas the dehydriding starting temperatures are lowered by some 70-100K. The results of PCI on ($Mg_9Ti_1$)-20 wt% Ni show that its hydrogen capacity is around 5.3 wt% and its reversible capacity and plateau pressure are also excellent at 523K and 573K. In addition, the reaction enthalpy, $\Delta$HD.plateau, is $30.6{\pm}5.7kJ/molH_2$.

Onset and Propagation of Hydrogen-Air Premixed Flame with Multiple Kinetics (다단 반응을 고려한 수소-공기 예혼합 화염의 발생 및 전파)

  • Han Cho Young;Baek Seung Wook
    • Journal of computational fluids engineering
    • /
    • v.9 no.1
    • /
    • pp.25-33
    • /
    • 2004
  • Flame onset and propagation within hydrogen premixed gas mixture are numerically investigated in an rectangular enclosure. A detailed chemistry for hydrogen reaction is applied to anticipate the thermochemical behavior of intermediate species appropriately. To facilitate computation, 10 species and 16 elementary reaction steps for hydrogen combustion are taken into account. On the basis of 30% of hydrogen concentration in hydrogen-air mixture, the effects of position and quantity of ignition sources on the flame evolution are analyzed. From the simulation results, the methods to decrease the potential hazard caused by the flame propagation are suggested.

Hydrogen Embrittlement Behavior of High Mn TRIP/TWIP Steels (고 Mn계 TRIP/TWIP 강의 수소취성 거동)

  • Jung, Jong-Ku;Lee, Oh-Yeon;Park, Young-Koo;Kim, Dong-Eun;Jin, Kwang-Geun
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.394-399
    • /
    • 2008
  • The hydrogen embrittlement susceptibility of high strength TRIP/TWIP steels with the tensile strength of 600Mpa to 900Mpa grade was investigated using cathodically hydrogen charged specimens. TWIP steels with full austenite structure show a lower hydrogen content than do TRIP steels. The uniform distribution of strong traps throughout the matrix in the form of austenite is considered beneficial to reduce the hydrogen embrittlement susceptibility of TWIP steels. Moreover, an austenite structure with very fine deformation twins formed during straining could also improve the ductility and reduce notch sensitivity. In Ubend and deep drawing cup tests, TWIP steels show a good resistance to hydrogen embrittlement compared with TRIP steels.

Flame Propagation within Hydrogen Premixed Gas mixture According to Ignition Condition (점화 조건에 따른 수소 예혼합기에서의 화염 전파)

  • Han, Cho-Young;Kim, Jeong-Soo;Lee, Kyun-Ho;Kim, Byung-Kyo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.350-355
    • /
    • 2003
  • Flame onset and propagation within hydrogen premixed gas mixture are numerically investigated in an rectangular enclosure. A detailed chemistry for hydrogen reaction is applied to anticipate the thermochemical behavior of intermediate species appropriately. To facilitate computation, 10 species and 16 elementary reaction steps for hydrogen combustion are taken into account. On the basis of 30 % of hydrogen concentration in hydrogen-air mixture, the effects of position and quantity of ignition sources on the flame evolution are analyzed. From the simulation results, the means that can lessen the possible hazard caused by flame propagation are suggested.

  • PDF

Influence of Punch Velocity on Gas Hydrogen Embrittlement Behaviors in SA372 Steel (압력용기용 강의 가스수소 취화 거동에 미치는 펀치속도의 영향)

  • Bae, Kyung-Oh;Shin, Hyung-Seop;Baek, Un-Bong;Nahm, Seung-Hoon;Park, Jong-Seo;Lee, Hae-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1497-1502
    • /
    • 2013
  • When using hydrogen gas as an ecofriendly energy sources, it is necessary to conduct a safety assessment and ensure thereliability of the hydrogen pressure vessel against hydrogen embrittlement expected in the steel materials. In this study, by applying the in-situ SP test method, the gas hydrogen embrittlement behaviors in SA372 steel, which is commonly used as a pressurized hydrogen gas storage container, were evaluated. To investigate the hydrogen embrittlement behavior, SP tests at different punch velocities were conducted for specimens with differently fabricated surfaces at atmospheric pressure and under high-pressure hydrogen gas conditions. As a result, the SA372 steel showed significant hydrogen embrittlement under pressurized hydrogen gas conditions. The effect of punch velocity on the hydrogen embrittlement appeared clearly; the lower punch velocity case indicated significant hydrogen embrittlement resulting in lower SP energy. The fractographic morphologies observed after SP test also revealed the hydrogen embrittlement behavior corresponding to the punch velocity adopted. Under this pressurized gas hydrogen test condition, the influence of specimen surface condition on the extent of hydrogen embrittlement could not be determined clearly.

Evaluation of Hydrogen Embrittlement of High Strength Steel for Automobiles by Small Punch Test (소형펀치시험을 이용한 자동차용 고강도강 수소취성 평가)

  • Park, Jae-Woo;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • The hydrogen embrittlement of high strength steel for automobiles was evaluated by small punch (SP) test. The test specimens were fabricated to be 5 series, having various chemical compositions according to the processes of heat treatment and working. Hydrogen charging was electrochemically conducted for each specimen with varying of current density and charging time. It was shown that the SP energy and the maximum load decreased with increasing hydrogen charging time in every specimen. SEM investigation results for the hydrogen containing samples showed that the fracture behavior was a mixed fracture mode having 50% dimples and 50% cleavages. However, the fracture mode of specimens with charging hydrogen changed gradually to the brittle fracture mode, compared to the mode of other materials. All sizes and numbers of dimples decreased with increasing hydrogen charging time. These results indicate that hydrogen embrittlement is the major cause of fracture for high strength steels for automobiles; also, it is shown that the small punch test is a valuable test method for hydrogen embrittlement of high strength sheet steels for automobiles.

Experimental study on hydrogen behavior and possible risk with different injection conditions in local compartment

  • Liu, Hanchen;Tong, Lili;Cao, Xuewu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1650-1660
    • /
    • 2020
  • Comparing with the large containment, the gas can not flow freely within the local compartment due to the small volume of the compartment in case of serious accident, which affects the hydrogen flow distribution, and it will determines the location where high concentration occurs in compartment. In this paper, hydrogen distribution and possible hydrogen risk in the vessel under the different conditions are investigated. The results show that when the initial gas momentum is increased, the ability of gas enters into the upper region of the vessel will be strengthened, and the hydrogen volume fraction in the upper region of the vessel is higher. Comparing with horizontal source direction, when source direction is vertically towards upper space, hydrogen is more likely to accumulate in the upper region of the vessel. With the increasing of steam mass flow, the dilution effect of steam on the hydrogen volume fraction will be strengthened, while the pressure in the vessel is also increased. When steam flow is decreased, the hydrogen explosion risk is higher in the vessel. The experiment data can provide technical support for the validation of the CFD software and the mitigation of hydrogen risk in the containment compartment.

Effect of Annealing Treatment on Microstructure and Hydrogen Embrittlement of Ti-6Al-4V Alloys Subject to Electrochemical Hydrogen Charging (전기화학적 수소 주입에 의한 Ti-6Al-4V 합금의 미세조직과 수소 취성에 미치는 어닐링 처리의 영향)

  • Ko, S.W.;Lee, J.M.;Kwon, Y.N.;Hwang, B.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.211-217
    • /
    • 2020
  • This paper presents a study on the hydrogen embrittlement of Ti-6Al-4V alloys with different microstructures depending on annealing treatment. They were electrochemically charged with hydrogen and subjected to tensile tests to investigate hydrogen embrittlement behavior. Tensile test results showed that the elongation of Ti-6Al-4V alloy specimens was remarkably decreased with increasing the volume fraction of β phase after hydrogen charging. This is because the β phase with a relatively low diffusivity tends to easily form a hydride at grain boundaries during electrochemical hydrogen charging. After hydrogen charging of the Ti-6Al-4V alloy specimen, it found that silver particles were decorated mostly at the grain boundary, and coarser silver particles were usually formed in the specimen annealed at 950 ℃. Therefore, the specimen having higher β phase fraction shows a poor hydrogen embrittlement resistance because the β phase promotes the formation of coarse hydride during electrochemical hydrogen charging, which leads to a large decrease in ductility.

The Effect of Hydrogen in Automobile High Strength Steel Sheets Charged with Hydrogen by Using Electrochemical Method (전기화학적 방법으로 수소장입시킨 자동차 강판재의 수소 영향)

  • Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.5
    • /
    • pp.212-217
    • /
    • 2012
  • High strength steel sheets used for automobile outer-panels have been intensively studied for developing a lightweight automobile under a strong pressure of the requirements for enhancing the mileage and energy saving in production of automobile parts. It is known that high strength steels are susceptible to hydrogen embrittlement, The susceptibility to hydrogen embrittlement increases with increasing its strength. However, the effect of hydrogen on the fracture behavior of high strength steels, though investigated extensively, has not been fully understood. In this paper, hydrogen was charged with 590DP steels by electrochemical method and its content was measured by hydrogen determinator with the different charging conditions. It was shown that the SP energy and maximum load decreased with increasing charging time. The results of SEM-fractography investigation for the hydrogen contained samples showed that a small portion of dimples on cleavage-fractured surface were observed and the size of the dimples were decreased with increasing hydrogen charging time.