• Title/Summary/Keyword: Hydrogen ambient

Search Result 165, Processing Time 0.034 seconds

A Study on the Injection Characteristics of Direct Injection CNG Fuel (직접분사 CNG 연료의 분사특성에 관한 연구)

  • Lee, S.W.;Rogers, T.;Petersen, P.;Kim, I.G.;Kang, H.I.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.643-647
    • /
    • 2014
  • Two types of fuel supply method ar used in CNG vehicles. One is premixed ignition and the other is gas-jet ignition. In premixed ignition, the fuel is introduced with intake air so that homogeneous air-fuel mixture may form. The ignitability of this method depends on the global equivalence ratio. In gas-jet ignition, CNG is introduced directly into the engine combustion chamber. The overall mixture is stratified by retarded fuel injection. In this study, a visualization technique was employed to obtain fundamental properties regarding overall mixture formation of direct injected CNG fuel inside a constant volume chamber. Jet angles, penetrations and projected jet area with respect to ambient pressure are investigated. The penetration decreases apparently and the time reaching the CVC wall was delayed as the chamber pressure increases. This is caused by the higher inertia of the fluid elements that the injected fluid must accelerate and push aside. It is same to liquid fuel such as diesel and gasoline, but this phenomenon is far more prominent for the gaseous fuel.

Performance Comparison of Molten Carbonate Fuel Cell Hybrid Systems Minimizing Carbon Dioxide Emissions (이산화탄소 배출을 최소화하는 용융탄산염 연료전지 하이브리드 시스템들의 성능 비교)

  • AHN, JI HO;YOON, SUK YOUNG;KIM, TONG SEOP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.30-39
    • /
    • 2017
  • Interests in fuel cell based power generation systems are on the steady rise owing to various advantages such as high efficiency, ultra low emission, and potential to achieve a very high efficiency by a synergistic combination with conventional heat engines. In this study, the performance of a hybrid system which combined a molten carbonate fuel cell (MCFC) and an indirectly fired micro gas turbine adopting carbon dioxide capture technologies was predicted. Commercialized 2.5 MW class MCFC system was used as the based system so that the result of this study could reflect practicality. Three types of ambient pressure hybrid systems were devised: one adopting post-combustion capture and two adopting oxy-combustion capture. One of the oxy-combustion based system is configured as a semi-closed type, while the other is an open cycle type. The post-combustion based system exhibited higher net power output and efficiency than the oxy-combustion based systems. However, the semi-closed system using oxy-combustion has the advantage of capturing almost all carbon dioxide.

Prediction of Heat Transfer Rates to Spray Water Droplets in a High Pressure Mixture Composed of Saturated Steam and Noncondensable Hydrogen Gas (고압의 포화수증기-비응축성 수소기체 혼합기 속에서 분무수적으로의 열전달을 예측)

  • Lee, S.K.;Jo, J.C.;Cho, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.337-349
    • /
    • 1991
  • Heat and mass transfer rates to spray water droplets for spray transients in a high pressure vessel have been predicted by two different droplet models: the complete mixing model and the non-mixing model. In this process, the ambient fluid surrounding the droplets is a real-gas mixture composed of saturated steam and noncondensable hydrogen gas at high pressure. The physical properties of the mixture are estimated by applying the concept of compressibility factor and using appropriate correlations. A computer program, DROPHMT, to calculate the heat and mass transfer rates for two different droplet models has been developed. As an illustrative application of the computer program to engineering practices, heat and mass transfer rates to spray water droplets for spray transients in a Pressurized Water Reactor (PWR) pressurizer have been calculated, and the typical results have been provided.

  • PDF

Analyzing the Effects of MEA Designs on Cold Start Behaviors of Automotive Polymer Electrolyte Fuel Cell Stacks (자동차용 고분자전해질형연료전지 스택에서의 막-전극접합체 설계인자가 저온시동에 미치는 영향성 연구)

  • Gwak, Geon-Hui;Ko, Jo-Han;Ju, Hyun-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.8-18
    • /
    • 2012
  • This paper presents a three-dimensional, transient cold-start polymer electrolyte fuel cell (PEFC) model to numerically evaluate the effects of membrane electrode assembly (MEA) design and cell location in a PEFC stack on PEFC cold start behaviors. The cold-start simulations show that the end cell experiences significant heat loss to the sub-freezing ambient and thus finally cold-start failure due to considerable ice filling in the cathode catalyst layer. On the other hand, the middle cells in the stack successfully start from $-30^{\circ}C$ sub-freezing temperature due to rapid cell temperature rise owing to the efficient use of waste heat generated during the cold-start. In addition, the simulation results clearly indicate that the cathode catalyst layer (CL) composition and thickness have an substantial influence on PEFC cold-start behaviors while membrane thickness has limited effect mainly due to inefficient water absorption and transport capability at subzero temperatures.

Solid Circulation Characteristics of Two Oxygen Carriers for Chemical Looping Combustion System (케미컬루핑 연소시스템을 위한 두 가지 산소전달입자들의 고체순환 특성)

  • RYU, HO-JUNG;LEE, DOYEON;NAM, HYUNGSEOK;JO, SUNG-HO;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.393-400
    • /
    • 2018
  • To confirm the operating range of two oxygen carriers for chemical looping combustion system, the effects of operating variables on solid circulation rate were measured and discussed using a two-interconnected circulating fluidized bed system at ambient temperature and pressure. Moreover, suitable operating ranges to avoid choking of the fast fluidized bed (air reactor) were confirmed for two oxygen carriers. A continuous long-term operation of steady-state solid circulation more than 24 hours was also demonstrated within the operating windows. Finally we could confirm that those two oxygen carriers are suitable for chemical looping combustion system with high solid circulation rate and smooth solid circulation.

Gas Sensitization of Tin Oxide Film by Resistance

  • Chwa, Sang-Ok;Park, Hee-Chan;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.183-188
    • /
    • 1998
  • Gas sensitizations of tin oxide film were investigated by measuring the change of film resistance in various gas atmospheres such as $N_2,\; O_2,\; H_2O$. The main test sample, polycrystalline $SnO_2$ film containing small Sb as a dopant was prepared by a sputtering technique and showed a long term stability in base resistance and thus, in gas sensitivity. The adsorption of oxygen on the film surface as a type of $(O_{ads})$ at the temperature of around $300^{\circ}C$ played important roles in sensor operating mechanism. The roles were ⅰ) the increase of base resistance in ambient air, which consequently lead to high sensitivity and ⅱ) the promotion of fast recovery. The reaction of hydrogen gas with the already adsorbed $(O_{ads})$ ions was considered as a decisive sensitization mechanism of tin oxide film. However, the dissociation of hydrogen molecules on film surface, by direct donation of electron to film also took a major part in the sensitization. The effect of humidity on gas sensitization was found to be negligible at the sensor operating temperature of around $300^{\circ}C$.

  • PDF

N$_2$ Plasma Treatment Effects of Silicon Nitride Insulator Layer for Thin Film Transistor Applications

  • Ko, Jae-Kyung;Park, Yong-Seob;Park, Joong-Hyun;Kim, Do-Young;Yi, Jun-Sin;Chakrabarty, K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.563-566
    • /
    • 2002
  • We investigated to decrease the leakage current of SiNx film by employing $N_2$ plasma treatment. The insulator layers were prepared by two step process; the $N_2$ plasma treatment and then PECVD SiNx deposition with $SiH_4$, $N_2$ gases. To prove the influence of the $N_2$ plasma treatment, the Si substrate was exposed to the plasma, which was generated in Ne gas ambient. Without plasma treatment SiNx film grow at the rate of 7. 03 nm/min, has a refractive index n = 1.77 and hydrogen content of $2.16{\times}10^{22}cm^{-3}$ for $N_2/SiH_4$ gas flow ratio of 20. The obtained films were analyzed in terms of deposition rates, refractive index, hydrogen concentration, and electrical properties. By employing $N_2$ plasma treatment, interface traps such as mobile charges and injected charges were removed, hysteresis of capacitance-voltage (C-V) disappeared. We observed plasma treated sample were decreased the leakage current density reduces by 2 orders with respect to the sample having no plasma treatment.

  • PDF

Hydrogen Isotope Exchange Reaction in Electrical Discharge through D2/H2O System (전기방전하에서 D2/H2O 반응계의 수소 동위원소 교환반응)

  • Kim, H.J.;Park, Y.D.;Lee, W.M.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.2
    • /
    • pp.77-84
    • /
    • 1998
  • Hydrogen isotope exchange in mixtures of $H_2O/D_2$, $H_2O/D_2O$, or $D_2O/H_2$ can be facilitated under electrical discharge. For example, a simple DC corona discharge through the mixture creates a plasma in which the reactants are excited energetically. The reactants in such plasma, due to increase in population of excited quantum levels or due to production of radicals or ions, undergo very rapid chemical reactions even at ambient temperature. The isotope exchange reaction of hydrogen(H) and deuterium(D) produces the third kind of heavy water(HDO) and isotopic hydrogen gas(HD), as shown in $D_2+H_2O{\rightarrow}HD$ K=11.257(at $25^{\circ}C$) The reaction products can be detected with temporal resolution using the Fourier transform infrared(FTIR) absorption spectroscopy. Since $H_2O$, $D_2O$ and HDO are all infrared active with different absorption peaks, FTIR proves to be a useful tool for monitoring the reaction. Experimental results show that the electrical method is indeed a useful means to promote the reaction, showing a better efficiency than traditional catalytic methods.

  • PDF

Effect of H2 Addition on the Properties of Transparent Conducting Oxide Films Deposited by Co-sputtering of ITO and AZO (동시 스퍼터링으로 제조한 AZO-ITO 혼합박막의 증착 중 수소 혼입 영향 분석)

  • Kim, Hye-Ri;Kim, Dong-Ho;Lee, Sung-Hun;Lee, Gun-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.267-271
    • /
    • 2009
  • Multicomponent transparent conducting oxide films were deposited on glass substrates at 150 by dual magnetron sputtering of AZO and ITO targets. In the case of mixing a limited amount of ITO (10W), resistivity of TCO films was significantly increased compared to the AZO film; from $3.5{\times}10^{-3}$ to $9.7{\times}10^{-3}{\Omega}{\cdot}cm$. Deterioration of the electrical conductivity is attributed to the decreases in carrier concentration and Hall mobility. Improvement of the conductivity could be obtained for the films prepared with ITO powers larger than 40 W. The lowest resistivity ($\rho$) of $7.3{\times}10^{-4}{\Omega}{\cdot}cm$ was achieved when ITO power was 100 W. Effects of $H_2$ incorporation on the electrical and optical properties of AZO-ITO films were investigated in this work. Addition of small amount of hydrogen resulted in the increase of carrier concentration and the improvement of electrical conductivity. It is apparent that the roughness of AZO-ITO films decreases dramatically after the transition of microstructure from polycrystalline to amorphous phase, which gives practical advantages such as an excellent uniformity of surface and a high etching rate. AZO-ITO films grown at sputtering ambient with hydrogen gas are expected to be applicable to optoelectronic devices such as organic light emitting diodes and flexible displays due to their sufficient electrical and structural properties.

The Analysis of Sulfur Compounds of Odorous Material in Kunsan Industrial Complex

  • Kim, Seong-Cheon;Kim, Ki-Hyun;Choi, Yeo-Jin
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.399-405
    • /
    • 2005
  • In this study, we investigated the gas chromatography (GC) and pulsed flame photometric detection (PFPD) system for the analysis of four major reduced S compounds including hydrogen sulfide ($H_2S)$; methyl mercaptan ($CH_3SH$); dimethyl sulfide (DMS); and dimethyl disulfide(DMDS) contained in environmental samples. To analyze these compounds in high concentration range (above ppb level), we developed a high mode analytical setting with the loop-injection system. By contrast, we also established a low mode setting for the analysis of low concentration samples (ppt-level samples from ambient air) by the combination with thermal desorption unit(TDU). Comparative analysis of both settings revealed that relative detection properties of four S compounds are systematic enough. The results of high mode analysis indicated that the patterns were systematic among compounds: H2S exhibited the lowest sensitivity, while DMBS showed the strongest one. The results were also compared in terms of sensitivity reductions for all compounds by dividing slope ratios between low and high mode system. Although low mode system exhibited significant reductions on the order of a few tens times, their detection characteristics were highly consistent as it was shown in the high mode setting. To learn more about absolute and relative relations between two different modes of S analysis, future studies may have to be directed to cover more complicated nature of GC/PFPD performance. Hydrogen sulfide($H_2S$) was over in summer about low level of olfactory sense 410 ppt, Methyl mercaptan(C$H_3SH$) was over in apring and summer about low level of olfactory sense 70, Dimethyl sulfide(DMS) was not over in four season about low level of olfactory sense 2,200 ppt. Carbon disulfide($CS_2$) was not over in four deason about Tow level of olfactory sense 210,000, Dimethyl disulfide(DMDS) was not over in summer about low level of olfactory sense2,000.

  • PDF