• Title/Summary/Keyword: Hydrogen Sulfide

Search Result 593, Processing Time 0.031 seconds

Hydrogen sulfide restores cardioprotective effects of remote ischemic preconditioning in aged rats via HIF-1α/Nrf2 signaling pathway

  • Wang, Haixia;Shi, Xin;Cheng, Longlong;Han, Jie;Mu, Jianjun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.239-249
    • /
    • 2021
  • The present study explored the therapeutic potential of hydrogen sulfide (H2S) in restoring aging-induced loss of cardioprotective effect of remote ischemic preconditioning (RIPC) along with the involvement of signaling pathways. The left hind limb was subjected to four short cycles of ischemia and reperfusion (IR) in young and aged male rats to induce RIPC. The hearts were subjected to IR injury on the Langendorff apparatus after 24 h of RIPC. The measurement of lactate dehydrogenase, creatine kinase and cardiac troponin served to assess the myocardial injury. The levels of H2S, cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), nuclear factor erythroid 2-related factor 2 (Nrf2), and hypoxia-inducible factor (HIF-1α) were also measured. There was a decrease in cardioprotection in RIPC-subjected old rats in comparison to young rats along with a reduction in the myocardial levels of H2S, CBS, CSE, HIF-1α, and nuclear: cytoplasmic Nrf2 ratio. Supplementation with sodium hydrogen sulfide (NaHS, an H2S donor) and l-cysteine (H2S precursor) restored the cardioprotective actions of RIPC in old hearts. It increased the levels of H2S, HIF-1α, and Nrf2 ratio without affecting CBS and CSE. YC-1 (HIF-1α antagonist) abolished the effects of NaHS and l-cysteine in RIPC-subjected old rats by decreasing the Nrf2 ratio and HIF-1α levels, without altering H2S. The late phase of cardioprotection of RIPC involves an increase in the activity of H2S biosynthetic enzymes, which increases the levels of H2S to upregulate HIF-1α and Nrf2. H2S has the potential to restore aging-induced loss of cardioprotective effects of RIPC by upregulating HIF-1α/Nrf2 signaling.

Corrosion Failure Analysis of a Biogas Pipe (바이오가스 배관의 부식 파손 원인 분석)

  • Min Ji Song;Woo Cheol Kim;Heesan Kim;Jung-Gu Kim;Soo Yeol Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.153-160
    • /
    • 2023
  • The use of biogas is an industrially necessary means to achieve resource circulation. However, since biogas obtained from waste frequently causes corrosion in pipes, it is important to elucidate corrosion mechanisms of the pipes used for biogas transportation. Recently, corrosion failure occurred in a pipe which supplied for the biogas at the speed of 12.5 m/s. Pinholes and pits were found in a straight line along the seamline of the pipe. By using corrosion-damaged samples, residual thickness, microstructure, and composition of oxide film and inclusion were examined to analyze the cause of the failure. It was revealed that the thickness reduction of biogas pipe was ~0.11 mm per year. A thin sulfuric acid film was formed on the surface of the interior of a pipe due to moisture and hydrogen sulfide contained in a biogas. Near the seamline, microstructure was heterogeneous and manganese sulfide (MnS) was found. Pits were generated by micro-galvanic corrosion between the manganese sulfide and the matrix in the interior of the pipe along the seamline. In addition, microcracks formed along the grain boundaries beneath the pits revealed that hydrogen-induced cracking (HIC) also contributed to accelerating the pitting corrosion.

The Effects of Tongue Coating on Volatile Sulfur Compounds Production in the Oral Malodor Patients (구취 환자에서 설태가 휘발성 황화합물의 생성에 미치는 영향에 관한 연구)

  • Lee, Hun;Lee, Seung-Ryeul;Kim, Young-Ku
    • Journal of Oral Medicine and Pain
    • /
    • v.26 no.3
    • /
    • pp.243-252
    • /
    • 2001
  • 본 연구에서는 구강 내 공기 중 설태 제거 전후의 휘발성 황화합물 농도를 gas chromatography를 이용하여 비교 분석하였다. 피검자로는 서울대학교 치과병원 구취클리닉에 내원한 환자 중에서 치주 건강 상태가 양호하며 구취를 호소하는 환자 18 명(평균연령 31.4세; 남자 8명, 여자 10명)을 대상으로 하였으며 구취를 측정하기 전에 모든 피검자들은 실험 전날 취침 전부터 실험 당일 실험시작 전까지 음식 섭취나 양치질 등의 모든 구강 활동을 금지하였다. 구취 시료는 채취 전에 피검자로 하여금 3분간 입을 다물게 한 후 입을 약 2cm정도 벌린 상태에서 시행하였으며 시료 채취 후 설태를 제거하였다. 설태 제거 후에 구강 내 공기를 다시 채취한 후 gas chromatography를 통하여 휘발성 황화합물의 각 성분별 농도를 분석하였다. 분석과정에서는 과거에 휘발성 황화합물의 검출 시 사용되어진 sampling loop와 isothermal run condition 대신 좀더 효율적인 직접표본주입방법과 oven temperature programmed analysis를 시행하였다. 1. 전체 휘발성 황화합물은 Hydrogen sulfide (59.96%), Methyl mercaptan (25.08%), Dimethyl sulfide (14.96%)로 구성되었다. 이 중 Hydrogen sulfide는 전체 휘발성 황화합물중 약 60%를 차지하여 치주상태가 양호한 구취환자에서의 주요한 구취 구 성 성분이었다. 2. 설태 제거 후 전체 휘발성 황화합물의 농도감소는 제거 전에 비하여 41.71%로 유의 하게 감소하였다(p<0.01). 3. 설태 제거 후에 Hydrogen sulfide의 농도감소는 43.62% (p<0.01), Methyl mercaptan 의 농도감소는 38.88% (p<0.05), 그리고 Dimethyl sulfide의 농도감소는 30.21% (p<0.01)로 각각 유의하게 감소하였다. 4. 전체 휘발성 황화합물의 구성비율은 설태 제거 전후에 유의한 차이가 없었다 (p>0.05).

  • PDF

The Analysis of Sulfur Compounds of Odorous Material in Kunsan Industrial Complex

  • Kim, Seong-Cheon;Kim, Ki-Hyun;Choi, Yeo-Jin
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.399-405
    • /
    • 2005
  • In this study, we investigated the gas chromatography (GC) and pulsed flame photometric detection (PFPD) system for the analysis of four major reduced S compounds including hydrogen sulfide ($H_2S)$; methyl mercaptan ($CH_3SH$); dimethyl sulfide (DMS); and dimethyl disulfide(DMDS) contained in environmental samples. To analyze these compounds in high concentration range (above ppb level), we developed a high mode analytical setting with the loop-injection system. By contrast, we also established a low mode setting for the analysis of low concentration samples (ppt-level samples from ambient air) by the combination with thermal desorption unit(TDU). Comparative analysis of both settings revealed that relative detection properties of four S compounds are systematic enough. The results of high mode analysis indicated that the patterns were systematic among compounds: H2S exhibited the lowest sensitivity, while DMBS showed the strongest one. The results were also compared in terms of sensitivity reductions for all compounds by dividing slope ratios between low and high mode system. Although low mode system exhibited significant reductions on the order of a few tens times, their detection characteristics were highly consistent as it was shown in the high mode setting. To learn more about absolute and relative relations between two different modes of S analysis, future studies may have to be directed to cover more complicated nature of GC/PFPD performance. Hydrogen sulfide($H_2S$) was over in summer about low level of olfactory sense 410 ppt, Methyl mercaptan(C$H_3SH$) was over in apring and summer about low level of olfactory sense 70, Dimethyl sulfide(DMS) was not over in four season about low level of olfactory sense 2,200 ppt. Carbon disulfide($CS_2$) was not over in four deason about Tow level of olfactory sense 210,000, Dimethyl disulfide(DMDS) was not over in summer about low level of olfactory sense2,000.

  • PDF

Isolation of Bacillus sp. as a Volatile Sulfur-degrading Bacterium and Its Application to Reduce the Fecal Odor of Pig

  • Ushida, Kazunari;Hashizume, Kenta;Miyazaki, Kohji;Kojima, Yoichi;Takakuwa, Susumu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1795-1798
    • /
    • 2003
  • Fecal malodor is an acute environmental issue to be solved for the intensive animal agriculture in Japan. Among these substances volatile sulfur such as hydrogen sulfide (HS), methanethiol, and dimethyl sulfide, and dimethyl disulfide are the ones most strictly controlled in the Japanese national regulations. In this experiment, we have screened a range of standard strains of chemoheterotrophic bacteria and of the presently isolated soil bacteria for their capacity to decompose HS. We have demonstrated that Comamonas testosteroni $JCM5832^T$ and our isolate Bacillus sp. had a potential to reduce malodor when applied to the pig feces.

Alternative Sludge Treatment Method for Hazardous Odor Minimization (유해성 악취 최소화를 위한 슬러지 대체 처리기법)

  • Son, Hyun-Keun
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.3
    • /
    • pp.193-197
    • /
    • 2003
  • 슬러지로부터 발생하게 되는 인체에 유해하고 독성이 강한 악취물질들은, 대다수 슬러지내의 단백질, 탄수화물등의 물질들이 미생물의 호기성 및 혐기성 분해과정을 통해서 생성되는 유ㆍ무기 물질들을 포함하게 된다. 슬러지로부터 발생하는 주된 악취물질로서 hydrogen sulfide, methanethiol, dimethyl sulfide, dimethyldisulfide,dimethyltrisulfide등이 발견되어졌는데 이 다섯 종의 악취물질들은 모두가 황을 포함하는 물질들이다. 본 논문에서는 인체에 유해한 슬러지 악취의 강도 및 세기를 결정하고 비교하는 데 이용되어 질 수 있는 odor index(ODI)라는 방식이 제시되어졌다. 세가지 종류의 슬러지, 즉 hypochlorite 용액으로 처리한 슬러지와 향수 물질로 처리한 슬러지 및 아무런 처리를 하지 않은 슬러지 세 종류를 대상으로 30일이 넘는 기간동안 인체에 유해한 악취물질들에 대한 누적 odor index(ODI)값을 생성하여 비교하였다. 아무런 처리를 하지 않은 슬러지에서 가장 높은 odor index(ODI)값들이 나타났으며, 이것은 슬러지 처리에 있어서 심각한 단기 및 장기적인 유해 악취발생 문제가 야기될 수 있음을 나타낸다. 이에 대하여 hypochlorite용액으로 처리한 슬러지로부터는 인체에 유해한 악취 발생을 처리 즉시부터 30일이 넘는 기간동안 측정한계치 이하 단계로 낮출 수 있었다.

Comparison of Seasonal Concentration of Ammonia and Hydrogen Sulfide in Swine House according to Pig's Growth Stage (돼지 생육 단계에 따른 계절별 암모니아와 황화수소의 돈사 내 농도 비교)

  • Kim, Ki Youn;Ko, Han Jong;Kim, Hyeon Tae
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.163-168
    • /
    • 2012
  • The objective of this study is to quantify the levels of ammonia and hydrogen sulfide inmechanically ventilated slurry-pit swine house according to pig's growth stage and seasonal condition. Mean concentrations of ammonia and hydrogen sulfide in the housing room of gestation/farrowing pigs were 5.60 (${\pm}2.48$) ppm and 178.4 (${\pm}204.8$) ppb in spring, 2.51 (${\pm}3.08$) ppm and 86.6 (${\pm}112.5$) ppb in summer, 4.96 (${\pm}2.84$) ppm and 182.3 (${\pm}242.6$) ppb in autumn, and 6.82 (${\pm}3.42$) ppm and 206.3 (${\pm}356.8$) ppb in winter, respectively. Mean concentrations of ammonia and hydrogen sulfide in the housing room of nursery pigs were 7.18 (${\pm}3.26$) ppm and 486.0 (${\pm}190.2$) ppb in spring, 4.23 (${\pm}2.95$) ppm and 206.4 (${\pm}186.9$) ppb in summer, 7.02 (${\pm}2.65$) ppm and 465.4 (${\pm}156.8$) ppb in autumn, and 9.25 (${\pm}3.68$) ppm and 618.4 (${\pm}298.3$) ppb in winter, respectively. Mean concentrations of ammonia and hydrogen sulfide in the housing room of growing/fattening pigs were 9.26 (${\pm}3.02$) ppm and 604.4 (${\pm}186.8$) ppb in spring, 6.78 (${\pm}3.88$) ppm and 312.5 (${\pm}215.4$) ppb in summer, 9.34 (${\pm}2.14$) ppm and 578.2 (${\pm}248.1$) ppb in autumn, and 14.65 (${\pm}3.15$) ppm and 825.3 (${\pm}316.9$) ppb in winter, respectively. As a result, mean concentrations of ammonia and hydrogen sulfide in terms of pig's growth stage were highest in growing/fattening housing room followed by nursery housing room and gestation/farrowing housing room (p<0.05). The swine house showed the highest levels of ammonia and hydrogen sulfide in winter followed by spring, autumn and summer. However, there was no significant difference of ammonia and hydrogen sulfide among seasons (p>0.05).

Generation of Hazardous Gas and Corrosion Originated from Anaerobic Digestion of Process Water in OCC Recycling Mill (골판지 재활용 공정수의 혐기성 분해에 따른 유해 기체의 생성과 부식)

  • Park, Dae-Sik;Ryu, Jeong-Yong;Song, Bong-Keun;Seo, Yung-Bum;Sung, Yong-Joo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.59-65
    • /
    • 2005
  • There are accumulations of remained chemical additives and contaminants in the process water of semi-closed linerboard mill. High temperature of the process water aggravates the anaerobic digestion of contaminated process water and causes the generation of hazardous gases, which are from the biological reaction of varied additives and contaminants. The hydrogen sulfide in the gases easily combine with moisture in the air, and become sulfuric acid, which causes corrosion of paper machinery. This hydrogen sulfide is from the reduction of sulfate ions in the process water, and the sulfate ions are mostly from the alum. We changed the alum to PAC (Poly Aluminum Chloride). The results were preventing generation of hydrogen sulfide, and equivalent sizing effect by the use of PAC.

Calibration Methods for the Gas Chromatographic Analysis of ppt-level Hydrogen Sulfide (H2) in Air (환경 대기 중 ppt 수준의 황화수소 분석을 위한 GC 방식의 검량 기법에 대한 연구)

  • 김기현;오상인;최여진;최규훈;주도원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.679-687
    • /
    • 2003
  • In this study, we investigated the analytical techniques to quantify the ambient concentration of hydrogen sulfide (H$_2$S) in air at ppt concentration level. For this purpose, an on-line GC analytical system equipped with both pulsed-flame photometric detector (PFPD) and thermal desorption unit (TDU) was investigated by collecting ambient air samples. The results of our study generally indicated that calibration conditions of GC system is highly sensitive to affect the accuracy of the analytical technique. Most importantly. we found that the use of different matrices in the the preparation stage of working standards was sensitive to control the overall performance of this technique. The calibration of our analytical system was tested by the two types of working standard (prepared by mixing either with high purity $N_2$ or with the ambient air). According to this test, the latter represented more efficiently the detecting conditions of actual air samples. The peak occurrence patterns of both air samples and standards (prepared by mixing with ambient air) were altered in a similar manner as the function of the loaded volume; however, it was not the case for the $N_2$-mixed standards. Results of our study suggest that detection of H$_2$S is highly different from other sulfides and that its quantification requires minimiaing interfering effects of non -pure substance (like water vapor) and (either sorptive or destructive) loss effects.

Prediction of Malodorous Landfill Substances Effect on Ambient Air Quality - A Case Study on Cheongju·Cheongwon Metropolitan Landfill - (매립지 악취가 주변 대기질에 미치는 영향 예측 - 청주청원 광역매립지 사례연구 -)

  • Lee, Sang-Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.695-705
    • /
    • 2012
  • The purpose of this study is to investigate concentration level and characteristics of malodour substances generated from landfill site in C city. Also, it is tried to predict distribution of concentration level using ISCST3 model around landfill site. From the results, it can be confirmed that twelfth-class malodour substances such as ammonia, methyl mercaptan, hydrogen sulfide, dimethyl sulfate, dimethyl disulfate, toluene, acetaldehyde, styrene, propionaldehyde, butylaldehyde, n-Valeraldehyde, xylene were generated from landfill site. The levels of the malodour substances were lower than that of permeable concentration regulated by odor control law in Korea. However, the concentration of malodour substances including methyl mercaptan, hydrogen sulfide, acetaldehyde, and propionaldehyde exceeded threshold limit value(TLV). It was seemed that these substances caused the problem of offensive odor around circumstance of landfill. The concentration of malodour substances was higher in slant than in upper part of landfill. The concentrations of malodour substances measured at night time were shown higher level than those at night time because atmospheric condition was stable at night time. It showed that the concentration of malodour substances were higher in spring. The results of atmospheric diffusion model predicted that tolerance limit level of hydrogen sulfide and methyl mercaptan was detected within nearly 5km from the boundary of landfill.