• Title/Summary/Keyword: Hydrogen Stations

Search Result 108, Processing Time 0.029 seconds

A Construction Plan of Hydrogen Fueling Stations on Express Highways Using Geographic Information System (지리정보시스템을 이용한 고속국도에서의 수소충전소 구축 방안)

  • Gim, Bongjin;Kook, Ji Hoon;Cho, Sang Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.255-263
    • /
    • 2014
  • This paper deals with a construction plan of hydrogen fueling stations on express highways using geographic information system. We analyzed the existing hydrogen fueling stations and production facilities to construct the hydrogen supply system to satisfy the hydrogen demands. Also, we suggested the necessary number and locations of hydrogen fueling stations on express highways for operating fuel cell vehicles. As a result, we need to construct at least 6 hydrogen stations on express highways in 2020 and 14 hydrogen stations in 2025. In 2030, when fuel cell vehicles are expected to spread over the whole nation, 114 hydrogen stations are needed to construct on express highways. This study mainly utilized the information of distances between hydrogen production facilities and fueling stations. However, we need to analyze the other factors such as traffic and income data. Also, it is necessary to make a suitable construction plan of hydrogen fueling stations that should be constructed on each district using geographic information system.

A Study on Safety Improvement for Mobile Hydrogen Refueling Station by HAZOP Analysis (위험과 운전 분석을 통한 이동식 수소충전소 안전성 향상에 관한 연구)

  • BYUN, YOON-SUP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.299-307
    • /
    • 2021
  • In order to expand the supply of hydrogen vehicles, the first thing to be done is to build an infrastructure to supply hydrogen. There are fixed and mobile types of hydrogen refueling stations that can supply hydrogen. Mobile hydrogen refueling stations have the advantage of supplying hydrogen to two or three areas, so the introduction of mobile hydrogen refueling stations is considered at the initial stage of hydrogen vehicle dissemination. However, mobile hydrogen refueling stations have greater risks than fixed hydrogen refueling stations due to the hazard associated with movement and intensive installation of facilities in vehicle, so stricter design standards to lower the risk must be applied. Therefore, in this study, basic data for establishing safety standards for mobile hydrogen refueling stations were proposed by suggesting improvements such as the location of emergency shutoff valves, the number of gas detectors etc., using HAZOP analysis.

Analysis of Hydrogen Sales Data at Hydrogen Charging Stations (수소 충전소의 수소 판매량 데이터 분석)

  • MINSU KIM;SUNGTAK JEON;TAEYOUNG JYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.3
    • /
    • pp.246-255
    • /
    • 2023
  • Due to lack of hydrogen charging stations and hydrogen supply compared to the supply of hydrogen vehicles, social phenomena such as 2-hour queues and restrictions on charging capacity are occurring, which negatively affects the spread of hydrogen vehicles. In order to resolve these problems, it is essential to have a strategic operation of the hydrogen charging stations. To establish operational strategies, it is necessary to derive customer demand patterns and characteristics through the analysis of sales data. This study derived the demand patterns and characteristics of customers visiting hydrogen charging stations through data analysis from various perspectives, such as charging volume, charging speed, number of visits, and correlation with external factors, based on the hydrogen sales data of off-site hydrogen charging stations located in domestic residential areas.

Analysis of Costs for a Hydrogen Refueling Station in Korea (한국 수소 충전소 건설의 경제성 분석)

  • KANG, BYOUNGWOO;KIM, TAEHYUN;LEE, TAECKHONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.256-263
    • /
    • 2016
  • As the hydrogen era comes near future, hydrogen fuel cell vehicles are core of hydrogen economy. Until now, Korea has 17 hydrogen refueling stations but 9 hydrogen refueling stations have been retired already and 8 hydrogen refueling stations are still running. With a limited number of hydrogen refueling stations, it is very difficult to get scientific data for the economy of hydrogen refueling stations in Korea. Thus, based on NREL(National Renewable Energy Laboratory) study, we analyzed most recent data for the construction of hydrogen refueling stations in one specific site in Korea. The cost comparison data between Korea and USA shows 14% difference, saying higher costs of Korea. Korea looks 5 years delay compared to USA. This data will be an important tool for the investment from every industrial parties.

Analysis of the Economy of Scale for Domestic Steam Methane Reforming Hydrogen Refueling Stations Utilizing the Scale Factor (Scale Factor를 이용한 국내 천연가스 개질식 수소충전소의 규모의 경제 분석)

  • GIM, BONGJIN;YOON, WANG LAI;SEO, DONG JOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.251-259
    • /
    • 2019
  • The aim of this study is to evaluate the economic feasibility of domestic on-site steam methane reforming (SMR) hydrogen refueling stations. We evaluated the levelized cost of hydrogen (LCOH) for the SMR hydrogen refueling stations, which have production capacities of 100 kg/day (SMR 100), 200 kg/day (SMR 200), and 500 kg/day (SMR 500) utilizing the scale factor. The main results indicated that the LCOH of SMR 100, SMR 200, and SMR 500 were 14,367 won/kg, 11,122 won/kg, and 8,157 won/kg, if the utilizations of hydrogen stations were 70%. These results imply that the production capacity of the domestic SMR hydrogen station should be greater than 500 kg/day to compete with other hydrogen stations when we consider the current sale price of hydrogen at the hydrogen stations.

Economic Evaluation of Domestic Low-Temperature Water Electrolysis Hydrogen Production (국내 저온수전해 수소생산의 경제성 평가)

  • Gim, Bong-Jin;Kim, Jong-Wook;Ko, Hyun-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.559-567
    • /
    • 2011
  • This paper deals with an economic evaluation of domestic low-temperature water electrolysis hydrogen production. We evaluate the economic feasibility of on-site hydrogen fueling stations with the hydrogen production capacity of 30 $Nm^3/hr$ by the alkaline and the polymer electrolyte membrane water electrolysis. The hydrogen production prices of the alkaline water electrolysis, the polymer electrolyte membrane water electrolysis, and the steam methane reforming hydrogen fueling stations with the hydrogen production capacity of 30 $Nm^3/hr$ were estimated as 18,403 $won/kgH_2$, 22,945 $won/kgH_2$, 21,412 $won/kgH_2$, respectively. Domestic alkaline water electrolysis hydrogen production is evaluated as economical for small on-site hydrogen fueling stations, and we need to further study the economic evaluation of low-temperature water electrolysis hydrogen production for medium and large scale on-site hydrogen fueling stations.

Current Status of Standardization for Quality Control of Hydrogen Fuel in Hydrogen Refueling Stations for Fuel Cell Electric Vehicles (수소충전소 내 연료전지용 수소연료 품질 관리 및 표준화 동향)

  • KIM, DONGKYUM;LIM, JEONG SIK;LEE, JEONGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.284-292
    • /
    • 2022
  • Hydrogen is promising a candidate for energy supporting the carbon neutrality policy for greenhouse gas reduction, which is being promoted in several countries, including Korea. Although challenging efforts-such as lowering the costs of green hydrogen production and fuel cells-remain, hydrogen fuel cell electric vehicles (FCEVs) are expected to play a significant role in the energy transition from fossil fuels to renewable energy. In line with this objective, the hydrogen FCEV working group in the International Organization for Standardization (ISO) compiled and revised international standards related to hydrogen refueling stations as of 2019. A well-established hydrogen quality management system based on the standard documents will increase the reliability of hydrogen charging stations and accelerate the use of FCEVs. In this study, among the published ISO standards and other references, the main requirements for managing charging stations and developing related techniques were summarized and explained. To respond preemptively to the growing FCEV market, a continuous hydrogen quality monitoring method suitable for use at hydrogen charging stations was proposed.

A Machine Learning based Methodology for Selecting Optimal Location of Hydrogen Refueling Stations (수소 충전소 최적 위치 선정을 위한 기계 학습 기반 방법론)

  • Kim, Soo Hwan;Ryu, Jun-Hyung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.573-580
    • /
    • 2020
  • Hydrogen emerged as a sustainable transport energy source. To increase hydrogen utilization, hydrogen refueling stations must be available in many places. However, this requires large-scale financial investment. This paper proposed a methodology for selecting the optimal location to maximize the use of hydrogen charging stations. The location of gas stations and natural gas charging stations, which are competing energy sources, was first considered, and the expected charging demand of hydrogen cars was calculated by further reflecting data such as population, number of registered vehicles, etc. Using k-medoids clustering, one of the machine learning techniques, the optimal location of hydrogen charging stations to meet demand was calculated. The applicability of the proposed method was illustrated in a numerical case of Seoul. Data-based methods, such as this methodology, could contribute to constructing efficient hydrogen economic systems by increasing the speed of hydrogen distribution in the future.

A Study on Safety Guidelines for Hydrogen Refueling Stations at Expressway Service Area using Quantitative Risk Assessment (정량적 위험성 평가를 통한 고속도로 휴게소 수소 충전소 안전 가이드라인 연구)

  • KIM, HEE JIN;JANG, KYEONG MIN;KIM, SOO HYEON;KIM, GI BEOM;JUNG, EUN SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.551-564
    • /
    • 2021
  • The use of clean energy based on the hydrogen economy is increasing rapidly due to the greenhouse gas reduction policies and the increase in the need for hydrogen. Currently, South Korea government have been considering a plan to construct hydrogen refueling stations at expressway service area for the purpose of supplying hydrogen vehicles. In the case of a hydrogen refueling stations, a quantitative risk assessment (QRA) must be performed because it includs and uses a high pressurized hydrogen storage tank. In this study, QRA was conducted using societal risk and F-N curve by the consequence assessment (CA) of jet fire and explosion according to the population density, capacity of the high pressurized hydrogen storage tank and frequency assessment (FA) data to the general hydrogen refueling stations systems in expressway service area. In the cases of jet with a leak diameter of 7.16 mm, regardless of expressway service area location, the societal risk was over 1E-04 that was acceptable for as Low As reasonably practicable (ALARP) region (workforce), but unacceptable for ALARP region (public). In the cases of gas explosion, all expressway service area satisfy ALARP region. In the case of the population density is over 0.0727, QRA for constructing the hydrogen refueling stations, must be conducted.

Plan to Promote the Supply of Hydrogen City Buses in Busan (부산시 수소시내버스 보급 활성화 방안 연구)

  • LEE, WONGYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.309-317
    • /
    • 2022
  • There are 2,517 buses on 143 routes in Busan. One company is operating 36 hydrogen city buses (1.4%) and two hydrogen charging stations. By 2030, the number of hydrogen city buses will be increased to 500 and 40 hydrogen charging stations. In the survey of city bus companies, 61.5% of respondents answered 'not reviewing (at all)' and 23.0% of respondents '(actively) reviewing hydrogen buses'. And as for the level of help that hydrogen city buses give to bus companies, 23.5% answered 'helpful'. In order to promote the introduction of hydrogen city buses, first, it is necessary to stipulate support for hydrogen bus purchase cost and hydrogen charging station construction cost in related ordinances so that bus companies do not increase their burden of purchasing hydrogen buses in the future. Second, identify the number of new city buses introduced, convert about 50% to hydrogen city buses by the mid-term, and build 50% of the chargers in public garages with hydrogen chargers. Third, expand hydrogen refueling stations in city bus garages.