• Title/Summary/Keyword: Hydrogen Residential Building

Search Result 5, Processing Time 0.022 seconds

Patent Analysis on Fuel Cell By-Product Utilization Technology for Operating Expenditure Reduction of Hydrogen Residential Buildings (수소에너지 주거건물의 운영비용 감축을 위한 연료전지 발전 부산물 활용기술에 관한 특허분석)

  • Ji, SangHoon;Kim, WeonJae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.488-493
    • /
    • 2020
  • The demand for hydrogen, which is considered an environmentally friendly energy source, is increasing, and at the same time, the fuel cell market is increasing continuously. This study aimed to establish a strategy for securing intellectual property rights on fuel cell by-product utilization technology for operating expenditure reduction of hydrogen-powered residential buildings. In this patent analysis, this study investigated Korean, American, Japanese, and European patents filed/published/registered by October 2019 and established a technical classification system and classification criteria through expert discussion. To reduce the operating expenditure of hydrogen-powered residential buildings, intellectual property rights will be improved using systems and methodologies involving cathode-side purified air, product water, and oxygen-depleted air captured with the dead-end mode operation of polymer electrolyte fuel cells.

An Experimental Study on the Explosion Hazards in the Fuel Cell Room of Residential House (주택 내 수소연료전지 전용실의 폭발 위험성에 대한 실험적 연구)

  • Park, Byoungjik;Kim, Yangkyun;Hwang, Inju
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.71-79
    • /
    • 2021
  • In this study, a real-scale fuel-cell room of volume 1.36 m3 is constructed to confirm the explosion characteristics of hydrogen-air mixture gas in a hydrogen-powered house. A volume concentration of 40% is applied in the fuel-cell room as the worst-case scenario to examine the most severe accident possible, and two types of doors (made of plastic sheet and wood) are fabricated to observe their effects on the overpressure and impulse. The peak overpressure and impulse based on distance from the ignition source are experimentally observed and assessed. The maximum and minimum overpressures with a plastic-sheet door are about 20 and 6.7 kPa and those with a wooden door are about 46 and 13 kPa at distances of 1 and 5 m from the ignition source, respectively. The ranges of impulses for distances of 1-5 m from the ignition source are about 82-28 Pa·s with a plastic-sheet door and 101-28 Pa·s with a wooden door. The amount of damage to people, buildings, and property due to the peak overpressure and impulse is presented to determine the safe distance; accordingly, the safe distance to prevent harm to humans is about 5 m based on the 'injuries' class, but the structural damage was not serious.

Operation Performance of a Polymer Electrolyte Fuel Cell Cogeneration System for Residential Application (가정용 고분자연료전지 시스템의 운전 방법에 따른 성능 비교)

  • Lee, W.Y.;Jeong, K.S.;Yu, S.P.;Um, S.K.;Kim, C.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.364-371
    • /
    • 2005
  • Fuel cell systems(FCS) have a financial and environmental advantage by providing electricity at a high efficiency and useful heat. For use in a residence, a polymer electrolyte fuel cell system(PEFCS) with a battery pack and a hot water storage tank has been modelled and simulated. The system is operated without connection to grid line. Its electric conversion efficiency and heat recovery performance are highly dependent on operation strategies and also on the seasonal thermal and electric load pattern. The output of the fuel cell is controlled stepwise as a function of the state of the battery and/or the storage water tank. In this study various operation strategies for cogeneration fuel cell systems are investigated. Average fuel saving rates at different seasons are calculated to find proper load management strategy. The scheme can be used to determine the optimal operating strategies of PEFCS for residential and building applications.

Development of Electrical Safety Evaluation Method about PEMFC 1kW (가정용연료전지 전기적 안전성 평가 기법 개발)

  • Han, Woonki;Park, Chaneum;Jung, Jinsu;Ko, Woonsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.99-99
    • /
    • 2011
  • Fuel cell systems are a completely different form of electricity source that has been used so far and is an aggregation of multiple technologies with multidisciplinary features that can be operated safely only when gas and electrical safety are being considered. Since fuel cells generate through electrochemical reactions there are difficulties in ensuring electricity safety, power quality assessment, effective control and reliability standards for system faults using conventional inspection techniques and even though they are necessary as a primary means for reduction of CO2 owing to the Climate Convention, electrical safety assessment and measures are required for the prevention of faults in residential facilities. Although small-scaled distributed power supplies can be utilized as important means of peak control and energy management measures, research is required for observing the effects on the system and the development of inspection technology to ensure stable operation, and the electrical safety of residential fuel cell systems need to be assessed and the problems derived for establishing electrical safety standards. From the year 2002, Japan has established laws on technical safety standards and development and rules on the product specifications and standards for the industrialization of hydrogen fuel cells. Also, a lot of effort have been made for the commercialization of fuel cells by building one-stop certification services. Internationally, the IEC TC 105 has established international standards based on fuel cells. In order to protect the national interest, the country should be able to respond accordingly meet global standards. In fact, in Korea, to comply with the international trend, Korea Energy Management Corporation is establishing a certified agenda for fuel cells and Korean Agency for Technology and Standards is enacting technical standards for fuel cells. The current terms of fuel cells are that research has been focused more on the quality and performance of manufactured products rather than stable power operation and maintenance over time. In this paper, by considering the household fuel cell as a power device, the safety standards of the fuel cell system for a reliable operation with the existing power system is being proposed.

  • PDF

Research of High Efficiency Integrated Reforming System Using Separated Reforming System (분리형 개질기를 이용한 고효율 일체형 개질기 개발에 관한 연구)

  • PARK, SANG-HYOUN;KIM, CHUL-MIN;SON, SUNG-HYO;JANG, SE-JIN;KIM, JAE-DONG;BANG, WAN-KEUN;LEE, SANG-YONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • A high efficiency integrated reforming system for improving the efficiency of the 5 kW PEMFC system used as the back up power of building was studied. The separated reforming system consisted of three parts - A steam reformer with two stage concentric circular shape, a heat exchanger type steam generator and a CO shift reactor. Temperature and steam carbon ratio (SCR) were control variables during operation. The operating conditions were optimized based on the thermal efficiency of the steam reformer as reformate gas composition changes at different temperature. In experiments, water was fully vaporized in the steam generator up to SCR 3.5 and the maximum thermal efficiency was achieved at the operating temperature around $700^{\circ}C$ in the steam reforming reactor. With the results of the separated reforming system research, we improved the shape of high efficiency integrated reformer. The performance evaluation of the integrated reformer was based on optimized operating conditions in SCR 3.5. As a result, the developed integrated reforming system maintained an efficiency of 76% and constant performance over 3,000 hours.