• 제목/요약/키워드: Hydrogen Plant

검색결과 603건 처리시간 0.029초

불산 누출 사고 시 불산에 노출된 식물잎을 이용한 대기 중 불화수소 농도 추정 (Estimation of the Concentration of HF in the Atmosphere Using Plant Leaves Exposed to HF in the Site of the HF Spill)

  • 임봉빈;김선태
    • 한국대기환경학회지
    • /
    • 제32권3호
    • /
    • pp.248-255
    • /
    • 2016
  • The leaves of three plant species, such as soybean, raspberry, and kudzu, exposed to hydrogen fluoride was collected in an area surrounding an emission source where the release accident occurred. The ultrasonic-assisted extraction and analysis of fluoride by ion chromatography was carried out. The mean concentration of fluoride in the leaves of three plant species exposed to hydrogen fluoride was $5,409{\pm}1,198mg\;F/kg\;dry\;wt$ and $788{\pm}339mg\;F/kg\;dry\;wt$, respectively. The mean fluoride concentration in ambient air were estimated to be $2.36{\pm}0.65mg/m^3$ ($2.89{\pm}0.79ppm$) and $0.35{\pm}0.15mg/m^3$ ($0.43{\pm}0.19ppm$) in exposed and unexposed sites, respectively. It seems likely that the passive monitoring using plant leaves could identify with respect to plant risk by fluoride in atmosphere.

Investigation of a Hydrogen Mitigation System During Large Break Loss-Of-Coolant Accident for a Two-Loop Pressurized Water Reactor

  • Dehjourian, Mehdi;Sayareh, Reza;Rahgoshay, Mohammad;Jahanfarnia, Gholamreza;Shirani, Amir Saied
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1174-1183
    • /
    • 2016
  • Hydrogen release during severe accidents poses a serious threat to containment integrity. Mitigating procedures are necessary to prevent global or local explosions, especially in large steel shell containments. The management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen reduction system and spray system. During the course of the hypothetical large break loss-of-coolant accident in a nuclear power plant, hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel and also core concrete interaction after ejection of melt into the cavity. The MELCOR 1.8.6 was used to assess core degradation and containment behavior during the large break loss-of-coolant accident without the actuation of the safety injection system except for accumulators in Beznau nuclear power plant. Also, hydrogen distribution in containment and performance of hydrogen reduction system were investigated.

수소화물에 의한 Zr 합금의 고온산화 가속효과 (Hydrogen Effect on the Oxidation of Zr-Alloy Claddings under High Temperature)

  • 정윤목;하성우;박광헌
    • 한국표면공학회지
    • /
    • 제49권4호
    • /
    • pp.389-394
    • /
    • 2016
  • The operation method of nuclear power plants is currently changing to high burn-up and long period that can enhance economics and efficiency of the plant. Since nuclear plant operation environment has been becoming severe, the amount of absorbed hydrogen also has increased. Absorbed hydrogen can be fatal securing safety of nuclear fuel cladding in case of Loss of Coolant Accidents(LOCA). In order to examine the impact of hydride on high-temperature oxidation, high-temperature oxidation experiment was performed on normal Zry-4 cladding and on Zry-4 cladding where hydrogen is charged in air pressure steam atmosphere under the $950^{\circ}C$ and $1000^{\circ}C$. According to the results, while oxidation acceleration due to charged hydrogen was not observed prior to breakaway oxidation creation, oxidation began to accelerate in cladding where hydrogens charged as soon as the breakaway oxidation started. If so much hydrogen are charged in the cladding, equiaxial monoclinic phase to unstable of stress is formed and it is presumed that oxidation is accelerated because nearby stress caused a crack in equiaxial phase, and that makes corrosion resistance decline sharply.

대용량 액체수소 인수기지 쿨다운 해석 기술 연구 (Study on Cool-down Analysis Technology for Large Scale Liquid Hydrogen Receiving Terminal)

  • 박창원;김동혁;이영범;서흥석;권용수
    • 한국수소및신에너지학회논문집
    • /
    • 제35권1호
    • /
    • pp.34-39
    • /
    • 2024
  • Korea government is trying to supply liquid hydrogen from another country to domestic The research for liquid hydrogen transportation and liquefaction plant of hydrogen underway for several years, and empirical research is also planned in the future. Along with the development of liquid hydrogen transport ship/liquefaction plant technology, the development of liquid hydrogen reception base technology must be carried out. In this study, a concept level liquid hydrogen receiving terminal is constructed based on the process of the LNG receiving terminal. Based on this, a study is conducted on the development of analysis technology for the amount of BOG (pipe, tank) generated during cooldown and unloading in the liquid hydrogen unloading line (loading arm to storage tank). The research results are intended to be used as basic data for the design and liquid hydrogen receiving terminal in the future.

수소동위원소 공정 안전해석 (Safety Analysis of a Hydrogen Isotopes Process)

  • 정흥석;강현구;장민호;조승연;김원국;남재연;김덕진;송규민;백승우;구대서;정동유;이정민;김창석;정기정;윤세훈
    • 한국수소및신에너지학회논문집
    • /
    • 제23권3호
    • /
    • pp.219-226
    • /
    • 2012
  • A nuclear fusion fuel cycle plant is composed of various subsystems such as a hydrogen isotope storage and delivery system, a tokamak exhaust processing system, and a hydrogen isotope separation system. Korea shares in the construction of the International Thermonuclear Experimental Reactor fuel cycle plant with the EU, Japan and US, and is responsible for the development and supply of the storage and delivery system. We thus present details on the hydrogen isotope process safety. The main safety analysis procedure is to use a hazard and operability study. Nine segments were studied how the plant might deviate from its design purpose. We present a detailed description of the process, examine every part of it to determine how deviations from the design intent can occur and decide whether these deviations can give rise to hazards. We determine possible causes and note protective systems, evaluate the consequences of the deviation, and recommend actions to achieve our safety goal.

Hydrogen Production from Barley Straw and Miscanthus by the Hyperthermophilic Bacterium, Cadicellulosirupter bescii

  • Minseok Cha;Jun-Ha Kim;Hyo-Jin Choi;Soo Bin Nho;Soo-Yeon Kim;Young-Lok Cha;Hyoungwoon Song;Won-Heong Lee;Sun-Ki Kim;Soo-Jung Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1384-1389
    • /
    • 2023
  • This work aimed to evaluate the feasibility of biohydrogen production from Barley Straw and Miscanthus. The primary obstacle in plant biomass decomposition is the recalcitrance of the biomass itself. Plant cell walls consist of cellulose, hemicellulose, and lignin, which make the plant robust to decomposition. However, the hyperthermophilic bacterium, Caldicellulosiruptor bescii, can efficiently utilize lignocellulosic feedstocks (Barley Straw and Miscanthus) for energy production, and C. bescii can now be metabolically engineered or isolated to produce more hydrogen and other biochemicals. In the present study, two strains, C. bescii JWCB001 (wild-type) and JWCB018 (ΔpyrFA Δldh ΔcbeI), were tested for their ability to increase hydrogen production from Barley Straw and Miscanthus. The JWCB018 resulted in a redirection of carbon and electron (carried by NADH) flow from lactate production to acetate and hydrogen production. JWCB018 produced ~54% and 63% more acetate and hydrogen from Barley Straw, respectively than its wild-type counterpart, JWCB001. Also, 25% more hydrogen from Miscanthus was obtained by the JWCB018 strain with 33% more acetate relative to JWCB001. It was supported that the engineered C. bescii, such as the JWCB018, can be a parental strain to get more hydrogen and other biochemicals from various biomass.

수소 취급설비의 폭발위험장소에 관한 연구 (A Study on Explosive Hazardous Areas in Hydrogen Handling Facility)

  • 표돈영;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.29-34
    • /
    • 2019
  • Safety of hydrogen handling facilities is needed as supply of hydrogen cars has been expanded recently. In this study, the adequacy of safety regulations of hydrogen handling facilities and the risk of damage with hydrogen leakage were studied. The range of explosion hazard location of the hydrogen filling plant was investigated using the computational fluid dynamics (CFD) method, Explosive hazardous area is influenced by leakage type, hole size and sectional area. When the conditions of KS standard are applied, range explosive hazardous area is expanded 7.05 m, maximum. It is about 7 times larger than exceptional standard of hydrogen station. Meanwhile, distance from leakage point to 25% LEL of hydrogen is investigated 1.6 m. Considering the shape of charging hose, regulation of hydrogen station is appropriate.

고온수전해 수소극용 Cu/YSZ 복합체의 제조 및 미세구조 (Synthesis and Microstructure of Cu/VSZ Composite for High Temperature Electrolysis Cathode)

  • 김종민;정항철;강안수;홍현선
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.238-243
    • /
    • 2007
  • The composite powder of Cu and YSZ was synthesized for a high temperature electrolysis cathode by mechanical milling. The average Cu particle size was reduced to 5 micro-meter from 48 micro-meter after the mechanical ball milling. The composite powder showed that Cu particles were uniformly covered with finer YSZ particles. Sub-micron sized pores were uniformly dispersed in the Cu/YSZ composit. Homogeneously-dispersed fine YSZ in the composite is expected to the increase in triple phase boundaries, thereby leading the enhanced performance of cathode.

Proposal and Analysis of Hydrogen Mitigation System Guiding Hydrogen in Containment Building

  • Park, Kweonha;Lee, Khor Chong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.516-521
    • /
    • 2015
  • This study is about a hydrogen mitigation system in a containment building like an offshore or a nuclear plant. A hydrogen explosion is possibly happened after condensation of steam if hydrogen releases with steam in a containment buildings. Passive autocatalytic recombiner is the one of the measures, but the performance of this equipment is not sure because the distribution of hydrogen is very irregular and is not predicted correctly. This study proposes a new approach for improving the hydrogen removing performance with hydrogen-guiding property. The steam is simulated and analysed. The results show that the shallow air containment reduced over 55% of the released hydrogen and the deep air containment type reduces over 80% of released hydrogen.

오프그리드용 풍력-연료전지 하이브리드 시스템 개발 (Development of WT-FC Hybrid System for Off-Grid)

  • 최종필;박내춘;김상훈;김병희;남윤수;유능수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.383-386
    • /
    • 2007
  • This paper describes the design and integration of the wind- fuel cell hybrid system. The hybrid system components included a wind turbine, an electrolyzer (for generation of H2), a PEMFC (Proton Exchange Membrane Fuel Cell), storage system and BOP (Balance of Plant) system. The energy input is entirely provided by a wind turbine. A DC-DC converter controls the power input to the electrolyzer, which produces hydrogen and oxygen form water. The hydrogen used the fuel for the PEMFC. The hydrogen is compressed and stored in high pressure tank by hydrogen gas booster system.

  • PDF