• Title/Summary/Keyword: Hydrogen Network

Search Result 178, Processing Time 0.028 seconds

Development of a Deterministic Optimization Model for Design of an Integrated Utility and Hydrogen Supply Network (유틸리티 네트워크와 수소 공급망 통합 네트워크 설계를 위한 결정론적 최적화 모델 개발)

  • Hwangbo, Soonho;Han, Jeehoon;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.603-612
    • /
    • 2014
  • Lots of networks are constructed in a large scale industrial complex. Each network meet their demands through production or transportation of materials which are needed to companies in a network. Network directly produces materials for satisfying demands in a company or purchase form outside due to demand uncertainty, financial factor, and so on. Especially utility network and hydrogen network are typical and major networks in a large scale industrial complex. Many studies have been done mainly with focusing on minimizing the total cost or optimizing the network structure. But, few research tries to make an integrated network model by connecting utility network and hydrogen network In this study, deterministic mixed integer linear programming model is developed for integrating utility network and hydrogen network. Steam Methane Reforming process is necessary for combining two networks. After producing hydrogen from Steam-Methane Reforming process whose raw material is steam vents from utility network, produced hydrogen go into hydrogen network and fulfill own needs. Proposed model can suggest optimized case in integrated network model, optimized blueprint, and calculate optimal total cost. The capability of the proposed model is tested by applying it to Yeosu industrial complex in Korea. Yeosu industrial complex has the one of the biggest petrochemical complex and various papers are based in data of Yeosu industrial complex. From a case study, the integrated network model suggests more optimal conclusions compared with previous results obtained by individually researching utility network and hydrogen network.

Exploration of Hydrogen Research Trends through Social Network Analysis (연구 논문 네트워크 분석을 이용한 수소 연구 동향)

  • KIM, HYEA-KYEONG;CHOI, ILYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.318-329
    • /
    • 2022
  • This study analyzed keyword networks and Author's Affiliation networks of hydrogen-related papers published in Korea Citation Index (KCI) journals from 2016 to 2020. The study investigated co-occurrence patterns of institutions over time to examine collaboration trends of hydrogen scholars. The study also conducted frequency analysis of keyword networks to identify key topics and visualized keyword networks to explore topic trends. The result showed Collaborative research between institutions has not yet been extensively expanded. However, collaboration trends were much more pronounced with local universities. Keyword network analysis exhibited continuing diversification of topics in hydrogen research of Korea. In addition centrality analysis found hydrogen research mostly deals with multi-disciplinary and complex aspects like hydrogen production, transportation, and public policy.

Optimal Hydrogen Recycling Network Design of Petrochemical Complex (석유화학단지 수소 재활용 최적 네트워크 설계)

  • Jeong, Changhyun;Lee, Chul-Jin;Kim, Dae-hyeon;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.25-31
    • /
    • 2007
  • In a petrochemical complex, large amount of hydrogen is produced as a by-product and used as a fuel in petrochemical and oil refinery plants. By recycling this byproduct hydrogen as a raw material, the value of hydrogen can be greatly improved. This paper proposes a design methodology for optimal hydrogen recycle network between plants in petrochemical complex by analyzing the hydrogen pinch, required cost and constraints.

A Study on Social Issues for Hydrogen Industry Using News Big Data (뉴스 빅데이터를 활용한 수소 이슈 탐색)

  • CHOI, ILYOUNG;KIM, HYEA-KYEONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.2
    • /
    • pp.121-129
    • /
    • 2022
  • With the advent of the post-2020 climate regime, the hydrogen industry is growing rapidly around the world. In order to build the hydrogen economy, it is important to identify social issues related to hydrogen and prepare countermeasures for them. Accordingly, this study conducted a semantic network analysis on hydrogen news from NAVER. As a result of the analysis, the number of hydrogen news in 2020 increased by 4.5 times compared to 2016, and as of 2018, the hydrogen issue has shifted from an environmental aspect to an economic aspect. In addition, although the initial government-led hydrogen industry is expanding to the mobility field such as privately-led fuel cell electric vehicles and hydrogen fuel, terms showing concerns about the safety such as explosions are constantly being exposed. Thus, it is necessary not only to expand the hydrogen ecosystem through the participation of private companies, but also to promote hydrogen safety.

Exergy Analysis and Heat Exchanger Network Synthesis for Improvement of a Hydrogen Production Process: Practical Application to On-Site Hydrogen Refueling Stations (수소 생산 공정 개선을 위한 엑서지 분석과 열 교환망 합성: 분산형 수소 충전소에 대한 실용적 적용)

  • YUN, SEUNGGWAN;CHO, HYUNGTAE;KIM, MYUNGJUN;LEE, JAEWON;KIM, JUNGHWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.515-524
    • /
    • 2022
  • In this study, the on-site hydrogen production process for refueling stations that were not energy-optimized was improved through exergy analysis and heat exchange network synthesis. Furthermore, the process was scaled up from 30 Nm3/h to 150 Nm3/h to improve hydrogen production capacity. Exergy analysis results show that exergy destruction in the SMR reactor and the heat exchanger accounts for 58.1 and 19.8%, respectively. Thus, the process is improved by modifying the heat exchange network to reduce the exergy loss in these units. As a result of the process simulation analysis, thermal and exergy efficiency is improved from 75.7 to 78.6% and 68.1 to 70.4%, respectively. In conclusion, it is expected to improve the process efficiency when installing on-site hydrogen refueling stations.

PREDICTION OF HYDROGEN CONCENTRATION IN CONTAINMENT DURING SEVERE ACCIDENTS USING FUZZY NEURAL NETWORK

  • KIM, DONG YEONG;KIM, JU HYUN;YOO, KWAE HWAN;NA, MAN GYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.139-147
    • /
    • 2015
  • Recently, severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1,000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1,000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.

Economic Efficiency of Using Existing Pipe Line in Hydrogen Network (수소 네트워크 구성 시 기존 파이프 라인 활용의 경제적 효과)

  • Kim, Daehyeon;Jeong, Changhyun;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.598-603
    • /
    • 2008
  • In petrochemical complex, Hydrogen Network optimization is surveying the extra Hydrogen and needed Hydrogen of each company and calculating the optimized distribution. This paper compares the case of using the existing pipeline and the case of not using the existing pipeline to show the effect quantitatively and clearly by modeling the both cases and using mathematical programming. As a result, using the existing pipeline can save the pipe cost over 20% and increase the whole network benefit by thirteen billion won.

Hydrogen Sensor Based on Palladium-Attached Fiber Bragg Grating

  • Lee, Sang-Mae;Sirkis, Jim-S.
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.69-73
    • /
    • 1999
  • This paper demonstrated the performance of a palladium wire hydrogen sensor based on a fiber Bragg grating as a means of developing a quasi-distributed hydrogen sensor network capable of operating at cryogenic temperatures. The new approach employing a fiber Bragg grating based palladium hydrogen sensor described in this study is advantageous over other traditional hydrogen sensors because of the multiplexing capability of fiber Bragg gratings. The sensitivity of the hydrogen sensor at room temperature is approximately 2.5 times that of the hydrogen sensor at cryogenic temperatures.

A Comparative Analysis of the Germany and Korea's Bilateral Cooperation Strategy to Secure Overseas Clean Hydrogen: Focusing on the Geopolitical Perspective (독일과 한국의 해외 청정수소 확보를 위한 양자협력 전략 비교 분석: 지정학적 관점을 중심으로)

  • JUN, EUNJIN;WOO, AMI;PARK, MIRA;JUNG, HYOUNDUK;SHIN, HYUN WOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.470-498
    • /
    • 2022
  • Recently, the world has been considering hydrogen energy as the primary energy transition means to achieve carbon neutrality by 2050. In order to achieve the goal of reducing greenhouse gas emissions, Korea is also promoting a clean hydrogen economy. However, it is necessary to introduce various clean hydrogen from overseas so that the projected demand can not meet the domestically produced. For this study, we conducted the policy comparison approach between countries other than the generally considered technical and economic approaches. The finding proposes the direction of bilateral cooperation for a strategy of securing overseas clean hydrogen from a geopolitical perspective. Germany was a target country for the policy comparison since it has a high proportion of manufacturing, like Korea, and is taking the lead in the renewable-based energy transition policy. According to the survey and analysis of the policy establishment status and new projects of the two countries, Germany is promoting bilateral international cooperation in the hydrogen area with about 33 countries based on 7 types of activities. In comparison, Korea is involved in bilateral cooperation with about 12 countries on relatively few activities. Among the types of bilateral cooperation, R&D cooperation with advanced countries for hydrogen technology was a common activity type. Germany preemptively promotes cooperation for demonstration and commercialization, considering geopolitical means and strengthening manpower training and assistance on policy and regulation to preoccupy the market for the future. Therefore, it is necessary to consider establishing a network of an entire life cycle of supply and demand network that links the future market with securing clean hydrogen considering the geopolitical distribution. To this end, Korea also needs to expand bilateral cooperation countries by activity type, and it seems necessary to seek various geopolitical-based bilateral cooperation and support measures for developing countries to diversify the supply sources of hydrogen.

Energy optimization of a Sulfur-Iodine thermochemical nuclear hydrogen production cycle

  • Juarez-Martinez, L.C.;Espinosa-Paredes, G.;Vazquez-Rodriguez, A.;Romero-Paredes, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2066-2073
    • /
    • 2021
  • The use of nuclear reactors is a large studied possible solution for thermochemical water splitting cycles. Nevertheless, there are several problems that have to be solved. One of them is to increase the efficiency of the cycles. Hence, in this paper, a thermal energy optimization of a Sulfur-Iodine nuclear hydrogen production cycle was performed by means a heuristic method with the aim of minimizing the energy targets of the heat exchanger network at different minimum temperature differences. With this method, four different heat exchanger networks are proposed. A reduction of the energy requirements for cooling ranges between 58.9-59.8% and 52.6-53.3% heating, compared to the reference design with no heat exchanger network. With this reduction, the thermal efficiency of the cycle increased in about 10% in average compared to the reference efficiency. This improves the use of thermal energy of the cycle.